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O
ne of the most significant recent
developments in the risk mea-
surement and management area
has been the emergence of value

at risk (VaR). The VaR of a portfolio is the
maximum loss that the portfolio will suffer
over a defined time horizon, at a specified level
of probability known as the VaR confidence
level. The VaR has proven to be a very useful
measure of market risk, and is widely used in
the securities and derivatives sectors: a good
example is the RiskMetrics system developed
by J.P. Morgan. VaR measures based on sys-
tems such as RiskMetrics’ sister, CreditMet-
rics, have also shown their worth as measures
of credit risk, and for dealing with credit-
related derivatives. In addition, VaR can be
used to measure cashflow risks and even oper-
ational risks.1 However, these areas are mainly
concerned with risks over a relatively short
time horizon, and VaR has had a more lim-
ited impact so far on the insurance2 and pen-
sions literatures3 that are mainly concerned
with longer-term risks. 

Yet the VaR literature also has relatively
little to say on longer-term risk measurement.
Perhaps the best-known advice it offers is the
square-root rule, and even that is usually
applied to short time horizons. If VaR(h) is
the VaR over a horizon of h days, and VaR(1)
is the VaR over one day, this rule tells us that
we can obtain the former from the latter by
multiplying it by the square root of h:

(1)

Such scaling is widely used, and is en-
shrined prominently in the Market Risk
Amendment to the Basle Accord.4 Unfortu-
nately, this rule is unreliable, and can lead to
considerable overestimates of VaR (see, e.g.,
Blake et al. [2000]). There also seems to be a
general feeling among practitioners that the
estimation of longer-term VaR is more diffi-
cult than the estimation of short-term VaR.
This perception owes much to problems of
longer-term volatility forecasting, the argu-
ment being that VaRs depend on volatility,
and volatility is (much) more difficult to fore-
cast over longer horizons (e.g., Christoffersen
et al. [1998, p. 109]).

This article offers a different approach to
this problem. Our approach goes back to first
principles and suggests that the estimation of
long-term VaR is actually quite straightfor-
ward. The idea is to apply a standard quantile
formula over the long-term horizon, and then
estimate VaR using estimates of the horizon-
average values of the parameters on which the
VaR depends. This approach does not require
us to forecast day-to-day volatilities over long
horizons, and so avoids the (real) difficulties
of standard volatility-forecasting approaches.
We also suggest that the estimation of long-
term VaR should not involve the square-root
rule, which can be misleading, even for rela-
tively short horizons, and is especially mis-
leading for longer ones. 

VaR h VaR h( ) ( )  = 1
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The outline of this article is as follows. Section 1

provides the basic analytical framework. Section 2 then
looks at how VaR varies with the holding period, and
section 3 carries out some sensitivity analysis and, in par-
ticular, looks at the sensitivity of VaR estimates to changes
in the mean and volatility of returns. Section 4 discusses
the derivation of the return parameters for long-term
VaR, and suggests that extrapolating traditional day-to-
day forecast techniques is effectively useless in this con-
text. Instead, the best approach is simply to take a view
about the values of the mean long-term parameters
involved. Some conclusions are offered in section 5.

1. BASIC ANALYSIS

Suppose we have a portfolio that generates a random
daily real log-return with mean µ > 0 and standard devi-
ation (or volatility) σ. Positive return observations corre-
spond to profits, and negative ones to losses, and we assume
for convenience that any interim profits/losses are
ploughed back into the portfolio and that the composi-
tion of our portfolio does not change over our invest-
ment horizon.5 The VaR confidence level is cl and we
consider VaR over a horizon of h days. 

To illustrate the method, assume that daily log-
returns are normally distributed. This lognormal assump-

tion is very convenient for VaR analysis, but we also get
similar results if we make the alternative assumption that
log-returns are Student-t distributed.6 The VaR associ-
ated with normally distributed log-returns is:

(2)

where P is the current value of our portfolio, Pcl is the (1
– cl) percentile (or critical percentile) of the terminal value
of the portfolio after a holding period of h days, and αcl
is the standard normal variate associated with our chosen
confidence level (e.g., so αcl = –1.645 if we have a 95%
confidence level; see, e.g., Dowd [2002, p. 43]).

2. VAR AND TIME HORIZON

We now consider how the VaR alters with the time
horizon. A typical example is shown in Exhibit 1, based
on annualized parameter values of µ = 0.075 and σ =
0.075 and an initial portfolio value of $1. This illustrates
how VaR changes with both time horizon and confi-
dence level. As the time horizon increases, the VaR rises
initially but then peaks, eventually falls, becomes negative,
and keeps falling thereafter.7 The behavior of the VaR
also depends on the confidence level: for relatively low

VaR h P P P h h Pcl cl( ) exp[ ln ]            = − = − + +µ α σ
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Note: Based on assumed parameter values of µ = 0.075 and σ = 0.25, and an assumed initial investment of $1. 
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confidence levels, the VaR peaks quickly and then rapidly
falls; but for relatively high confidence levels, the VaR
peaks slowly and stays at or near its maximum value—
which is bounded above by, and sometimes close to, the
value of the investment itself—for a long time. Note, too,
that while the VaR has this natural upper bound, it has
no corresponding lower bound, and will fall indefinitely
as the horizon continues to rise.

The VaR surface always retains this same shape pro-
vided that µ and σ are both positive. However, if µ = 0,
the VaR surface takes the rather different shape shown in
Exhibit 2: the VaR approaches its ceiling asymptotically,
and stays in that region indefinitely; and it approaches this
maximum more quickly for the higher confidence levels.
The story is therefore obvious: the VaR will initially rise,
and will rise to its maximum possible value; however,
when µ > 0, the compounding of the mean return over
the time horizon will eventually bring it down, and it
will continue to fall thereafter.

Some other general results can also be deduced from
Exhibits 1 and 2 or from the results shown in Exhibit 3. 

• If µ is relatively low and σ is relatively high, then the
VaR rises relatively slowly toward its peak value, and
stays close to that value for a long time. For example,

the VaR at the 95% confidence level rises to 0.830
when the horizon reaches 20 years, and is still
increasing with the horizon.

• If µ is relatively high and σ relatively low, the VaR
rises and then falls relatively quickly. The comparable
VaR—at the 95% confidence level and 20-year horizon
period—in this case has already peaked and fallen to
–1.451, and continues to fall with the time horizon.

It is also clear that the square-root VaR will gener-
ally be very inaccurate over longer periods. Equation (1)
indicates that the square-root VaR will rise indefinitely,
proportionately to the square root of the time horizon, if
we make the reasonable assumption that the initial, one-
day VaR, is positive. At some point, it will therefore break
through the VaR’s (usual) natural upper barrier—the value
of the investment—and grossly over-estimate the VaR. By
contrast, the true VaR will rise toward the barrier and
then fall again, and ought never to exceed the value of the
investment given limited liability. The magnitude of the
error associated with the square-root rule thus rises with
the time horizon. In addition, this error rises with µ,
because the square-root formula makes no proper allowance
for the impact of the compounding of µ in the VaR. 8
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3. SENSITIVITY ANALYSIS

Sensitivity of VaR Estimates to Mean Return

The next stage in our analysis is to examine the sen-
sitivity of our VaR estimates to changes in various assump-
tions, and we begin by looking at their sensitivity to mean
returns. To do so, we increase the assumed daily mean return
by 1% of its value, and derive the associated percentage
change in VaRs. Our results indicate that the sensitivity of
VaR to estimated mean return is generally low over short
time horizons. However, the sensitivity of our VaRs to the
estimated mean also tends to rise in absolute terms, and
eventually changes sign. Thus, broadly speaking, the VaR
estimates become more sensitive to assumed mean returns,
the longer the time horizon on which the VaRs are based.

Sensitivity of VaR Estimates 
to Return Volatility

We now look at the sensitivity of VaR to the volatili-
ty of returns. Exhibit 5 reports some illustrative results
showing percentage changes in VaR conditional on a 1%

increase in volatility. Generally speaking, we tend to find
that the sensitivity of the VaR to volatility increases with
the holding period and, at least for low confidence levels,
eventually changes sign as well. These results show that
VaR is sensitive to volatility assumptions, and that the
effect of a change in volatility on VaR depends importantly
on the length of the time horizon. 

4. DERIVING THE RETURN PARAMETERS FOR
LONG-TERM VAR

We have assumed so far that we already have esti-
mates of the mean and volatility of returns that apply over
our time horizon. But how do we derive these? 

One approach is to forecast them using conventional
forecasting methods. We could break up our horizon into
a series of successive sub-periods (e.g., days) and forecast our
mean return or volatility for each day in our horizon period.
We could then use these forecasts to construct an estimate
of the mean return or volatility for our whole horizon period
or feed them into a more complex multi-period VaR anal-
ysis (e.g., such as a Monte Carlo simulation). 
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Horizon (years) 1 2.5 5 10 20 40

Low µ , high σ

VaR at 95% cl 0.415 0.555 0.663 0.758 0.830 0.870

VaR at 99% cl 0.539 0.695 0.802 0.886 0.942 0.971

High µ , low σ
VaR at 95% cl 0.137 0.131 0.050 -0.246 -1.451 -10.468

VaR at 99% cl 0.220 0.261 0.244 0.098 -0.552 -5.010

E X H I B I T 3
VaR and Time Horizon

Note: Figures are VaRs based on Equation (1), an initial investment of $1, and assumed parameter values of 
µlow = 0.04, µhigh = 0.10, σlow = 0.15, and σhigh = 0.35. 

Percentage Change in VaR

Horizon (Years) = 1 2.5 5 10 20 40

% Change in VaR at 95% cl -0.2% -0.3% -0.5% -1.0% -3.8% 9.0%

% Change in VaR at 99% cl -0.1% -0.2% -0.3% -0.4% -0.8% -3.0%

E X H I B I T 4
Sensitivity of VaR to Mean Return

Note: Based on assumed parameter values of µ = 0.075 and σ = 0.25, and a +1% change in µ.
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Unfortunately, this approach runs into various diffi-
culties. One problem is that any long-run forecasting rule
will eventually give implausible forecasts if the variable
being forecasted has a trend and our horizon is long enough.
If the variable concerned has a trend—however small—
then the forecasted variable will eventually become implau-
sibly high or low, and any results based on such forecasts
will lose their credibility. When forecasting variables in the
long run, we must therefore rule out trends or impose arbi-
trary bounds on the variables being forecasted. However,
if we impose arbitrary bounds, then the forecasting pro-
cedure becomes irrelevant, as we know the forecasted vari-
able will eventually hit one of its bounds, and we may as
well impose arbitrary values in the first place.

The implication is that we can only forecast our vari-
ables as they move around a zero trend, but in that case,
why not just assume that the variable being forecasted takes
its current value, or perhaps some typical recent value?
Even if we had day-to-day forecasts, their fluctuations will
tend to cancel out as the forecasted variable keeps returning
toward its zero trend; a horizon-average of day-to-day fore-
casts would give us much the same result as projecting some
recent value over our horizon period, and particularly so
over longer horizons where the averaging-out process has
more scope. Attempting to forecast these variables on a
day-to-day basis is therefore pointless.9

The foregoing discussion suggests that attempts to
forecast the mean or volatility of returns over successive
small periods are likely to be both difficult and unneces-
sarily complex. If forecasting with trends leads to explo-
sive results over long horizons, and if fluctuations around
a zero trend tend to cancel out, then we might as well use
a simplistic approach and take a view about the average
long-term values of the relevant parameters—which is
exactly the approach adopted in the previous section.

5. CONCLUSIONS

This article offers an easily implementable approach
to the estimation of long-term VaR. This approach also
provides some useful insights about the factors that deter-
mine long-term VaR and, in particular, about the impact
of mean and volatility assumptions on estimates of long-
term VaR. Our approach avoids problems associated with
the square-root rule, as well as those associated with
attempting to extrapolate day-to-day volatility forecasts
over long horizons. Nonetheless, we should keep in mind
that estimates of long-term VaR, like those of its short-
term counterpart, are likely to be subject to considerable
model and parameter risk.

ENDNOTES

The authors thank various anonymous referees whose
comments have improved the article; however, the usual caveat
applies.

1For more on VaR and its applications, see, e.g., Dowd
[2002] or Barry Schachter’s website on VaR, www.gloriamundi.
org.

2A notable exception is an article by Panning [1999], which
applies VaR to property/casualty insurers. The Panning article
deals with four main issues: estimation risk, the impact of a
changing portfolio, franchise risk, and the application of VaR to
long-term risk management. By contrast, our study focuses on
only one issue (i.e., the estimation of long-term VaR) and covers
this issue more comprehensively than Panning does (e.g., it exam-
ines the effects of the time horizon more closely, and has more
to say on subsidiary issues such as volatility estimation). 

3However, the issues involved in VaR are clearly related
to the issues that arise in the probability-of-ruin literature, and
there have been some attempts to apply VaR techniques to
pension funds (e.g., the PensionMetrics approach of Blake et
al. [2001], or Gupta et al. [2000]).
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Percentage Change in VaR

Horizon (Years) = 1 2.5 5 10 20 40

% Change in VaR at 95% cl 1.0% 1.1% 1.3% 1.8% 4.5% -7.8%

% Change in VaR at 99% cl 0.9% 0.9% 0.9% 0.9% 1.3% 3.7%

E X H I B I T 5
Sensitivity of VaR to Return Volatility

Note: Based on assumed parameter values of µ = 0075. and σ = 025., and a +1% change in σ. 
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4Specifically, the Market Risk Amendment suggests that
banks should estimate VaR for a 10-day horizon, and banks
are allowed to obtain these estimates by scaling up shorter-
horizon VaRs using the square-root rule (Basle Committee
[1996, Section B.4, paragraph c, p. 44]).

5This assumption is made for convenience, but can be
relaxed in one of two ways. The first is to add an additional
instrument to our portfolio to capture the effect of any dynamic
asset-allocation strategy that we might be implementing. For
example, if we have a portfolio insurance allocation strategy,
we can model this strategy as a synthetic put option added to
our portfolio. Our VaR estimate will then take account of how
our asset allocation will change in response to changes in under-
lying variables. An alternative is to estimate VaR using period-
by-period stochastic simulation (e.g., as in Blake et al. [2001]).
This latter approach is more flexible and accommodates a prac-
tically unlimited range of asset-allocation strategies.

6This latter assumption allows us to accommodate lep-
tokurtosis, or fatter than normal tails, which are a well-estab-
lished feature of empirical return distributions. In the present
context, a normal distribution is slightly more convenient, and
does not alter our qualitative conclusions. In addition, we can
often replace such unconditional parametric assumptions with
conditional ones (e.g., to allow for GARCH effects, mean
reversion, jumps, etc.). However, a thorough analysis of how
such factors might alter long-term VaR is beyond the scope of
this article. 

7A negative VaR simply means that the likely worst out-
come at the specified level of confidence is a profit, rather than
a loss.

8It is clear from the VaR equation that this result depends
in part on the assumption that µ > 0, and that for any given h,
the degree of over-estimation increases directly with µ. We
would also argue that the assumption that µ > 0 is not unrea-
sonable if we are considering investments, although it might be
problematic in some insurance contexts (e.g., dealing with loss
reserves). However, we would emphasize that the basic VaR
approach is not contingent on any particular assumptions about
the mean return, and we can easily estimate VaRs assuming
zero or negative mean returns if we ever wanted to.

9Forecasting volatility is also very difficult and, as Christof-
fersen et al. [1998, p. 109] conclude in a recent study, “Volatility
forecastability seems to decline quickly with horizon, and seems
to have largely vanished beyond horizons of ten or fifteen trading
days.” As the same study also points out, the temporal aggre-
gation properties of existing volatility-forecasting models are
not well understood, so we can rarely, if ever, rely on the alter-
native of temporal aggregation to obtain volatility forecasts.
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