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A Trend-Change Extension of the Cairns-Blake-Dowd Model

Abstract

This paper builds on the two-factor model developed by Cairns et al (2006) for projecting
future mortality. It is shown that these two factors do not follow a random walk, as
proposed by Cairns et al, but should instead be modeled as a random fluctuation around a
trend, the trend changing periodically. Projecting mortality rates in this way suggests much

greater uncertainty over future mortality improvements.
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1. Introduction

In recent years, there have been a number of models developed to try to ascertain future
changes in mortality rates. The most well-known of these is the model developed by Lee
and Carter (1992), but this has seen many developments, such as the more robust
treatment of errors by Brouhns et al (2002) and the addition of cohort effects by Renshaw
and Haberman (2003, 2006). There are also continuous time variants such as those
developed by Milevsky and Promislow (2001), Dahl (2004), Dahl and Mgller (2005),
Miltersen and Persson (2005), Biffis (2005) and Schrager (2006). The version | consider,
however, is a discrete time model developed by Cairns et al (2006), to which | refer as the
CBD model. Whilst Cairns et al (2007) do develop more complex models, the CBD model’s

simplicity is attractive and better allows the demonstration of the approach in this paper.

The CBD model is an innovative two-factor model. It assumes that each of the two
parameters follows a random walk with drift, the rate of drift being constant and changes in
the parameters being correlated. This approach is well-suited for the pricing of mortality-
related derivatives with a term of a few years; however, when considering the very long-
term, it becomes clear that the patterns for these two factors do not necessarily resemble a
random walk; for most periods each of the factors can be modeled as a random fluctuation

around a trend, the trend changing periodically.

The CBD model describes the logit of the initial mortality rate with a slope term and an

intercept term, allowing for the number of deaths to follow a poisson distribution. Future



stochastic simulations are then obtained by projecting these two terms as following
correlated random walks. In other words:
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(1)
where %t is the initial mortality rate for a life aged ¥ attime f ; k1: js the intercept term,
kappa 1, at time  ; &2; is the slope term, kappa 2, at time [ ; and £x.¢ is an error term.

The CBD model is calibrated using data over the period 1961 to 2002. However, by
extending the time period over which the CBD model is fitted to cover the period from 1841
to 2005, clear patterns can be seen in kappa 1 and kappa 2, as shown in Figure 1. The data
used for these calculations is obtained from the Human Mortality Database (2008). Figure 1
suggests that both kappal and kappa2 exhibit variation around a trend rather than
following random walks. They also suggest that these trends change suddenly and
definitely, that changes in the trend for kappa 1 and kappa2 tend to happen at the same
time, and that there is strong negative correlation between the direction of these trend

changes.
[FIGURE 1 ABOUT HERE]

The organization of this paper is, then, as follows. First, | consider ways in which change-
points in the trend can be determined. | then fit trends to different sections of the data.
Within each of these sections, | then consider whether the observations are trend- or
difference-stationary. Next, | propose an approach for projection mortality rates based on

this structure, and finally | show the results of some of these projections.



2. Determining the Change-Points in the Trend

Looking at Figure 1, it is clear that there are breaks in the trend for both kappa 1 and kappa
2, despite the higher volatility at the start of the period under investigation. The most likely
explanation for this difference in volatility is that the lower life expectancies early in the
period meant that the number of lives at higher ages was smaller, leading to greater
volatility in observed mortality rates and thus in the parameterisation of the model. Despite
the clear existence of breaks, it is not necessarily clear exactly where these breaks occur,

and whether any changes are significant enough to be considered changes in trend.

One way of investigating possible change-points is to fit lines to sections of kappa 1 and
kappa 2 and to calculate the Durbin-Watson (DW) statistic. If the line fitted covers data
within a single trend, then the DW statistic should show no evidence of significant serial
correlation. However, if a line covers, say two periods where the rate of change is lower in
the second period than the first, then the first and last sections of the data would lie below
the line whilst the middle section would lie above it. This would lead to the DW statistic
showing significant positive serial correlation. This approach is not exact, but gives some

clues as to where breaks might occur.

The exact approach used is to fit a line for each year ¥ where ¥ =1841 to 2003 (so using at
least three years of data to calculate the DW statistic) and, within each year for each period
P where P =3 to 2005-¥ . This approach can point to broad areas where changes in trend
might occur; however, when fitting a series of lines to this data, some trial and error is

required to get a good fit.



3. Fitting a Model

The broad approach used to fit lines to kappa 1 and kappa 2 is a weighted least squares
approach. This is necessary because of the heteroskedasticity present in both kappa 1 and
kappa2 — the variances decrease substantially over time. The weights used are the
reciprocals of the variances for the seven years centered on the observation in question.
The weights for the first three observations are set equal to the fourth observation; the
weights for the last three observations are set equal to the fourth from last observation.

| first consider kappa 1. For each variable, break points in the trend are identified. Let the
final year of a trend (and the first year of the next) for kappa 1 be identified as PiLmtkar

where 1851} =1..Nk1} =1 | This means that the number of break points is #k1}—=1 and

the number of lines to be fitted is &1}, Each line is expressed as a constant, kLakis plus

a slope, Fkimecar | the latter being multiplied by the year. This means that the estimate of

kappa 1, k1 , is described as follows:
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Similarly, the estimate of kappa 2, k2 , is described as follows:
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i tzg + Froa¥ I Drgy < 3 £ biegg

(3) Gxgreay T Frownd? P > Dygyaa
It can also be said that
(4)  kappa 1= &L+ &k, and

(5) kappa 2 = k2 + fxz, and



where £x1 and £x: are the residuals. Initially, %22 is set equal to #%2F . Furthermore, all
Yximecer are set equal to “kzmesr . This second point seems sensible, since a visual
inspection of kappa 1 and kappa 2 suggests that changes in trends occur at about the same
time in one as in the other, although there are perhaps some instances when a significant

change occurs in only one series. This is investigated below.

When fitting the lines, all potential changes in trend are considered initially. The lines are
then fitted by minimizing the sum of squared errors subject to the restriction that:

(6)  Frrmin ¥ FrimmoPiLesn = Gnesoes T Feinsoss P mi

and:

(7) Ereamaes ¥ Feznmndianen = Cronenes ¥ FanasrseDeomasy

for nfkl} = 1. N¥il} gnd mék2}r = 1. W€k2}  The first test | carry out is a Chow test. For
each consecutive pair of trends, | also fit a single line covering both trends and calculate the

test statistic as:
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(8)
where 338, | 358z and 338t are the sums of squared residuals from the first section of
data, the second section of data and the combined dataset respectively. The number of
variables, given by ¥ is two, and the numbers of observations in the first and second groups

of data are given by V1 and ¥z,

The restrictions in (6) and (7) effectively mean that the slope parameters are optimized

subject to restrictions on the level parameters. | therefore look at the difference between



successive slope parameters to identify where any change in slope is not statistically
significant, calculating a t-statistic using the joint standard error calculated assuming

unequal sample sizes and unequal variances in each sample.

| also consider the DW statistic for the various sections. If separate trends are combined,
then this may be highlighted by significant positive serial correlation, suggesting that a

change in trend has been missed.

The results are given in Table 1 for kappa 1 and Table 2 for Kappa 2. The first columns give
the first year of the new trend and the last year of the previous one. The second and third
columns give the intercept and slope parameters respectively, with standard errors for each

variable in parentheses below.

The fourth column in each table gives the DW statistics for each trend period. The DW
statistic is centered on 2. When considering positive serial correlation, a statistic with a
value less than dL gives evidence of significant positive serial correlation, one with a value
greater than dL gives no evidence of significant positive serial correlation, and one with a
value between dL and dU suggests only possible positive serial correlation. This is designed
to show whether combining lines has led to a single fit covering more than one trend (as

would be seen with significant positive serial correlation).

The fifth column gives the results of Dickey-Fuller (DF) tests for each section of the data.

Under the null hypothesis of a DF test, the time series under investigation follows a random



walk with drift — in other words, it has a unit root. The alternative hypothesis is that the

time series consists of random deviations from a trend.

The sixth column gives the difference in the slope parameter from period to period,

together with the standard error of the difference in parentheses below. The asterisks

denote whether the difference between the trends is statistically significant.

Finally, the seventh column in each table gives the Chow test results.

[TABLE 1 ABOUT HERE]

[TABLE 2 ABOUT HERE]

Looking first at kappa 1, a number of break points appear to be less than convincing,
suggesting the need for further investigation; however, the only break point not strongly

identified by the Chow tests in kappa 2 is the first.

Trying various combinations of the trends and examining the various statistics suggests that

the breakpoints identified in Tables 3 and 4, below, better describe the data.

[TABLE 3 ABOUT HERE]

[TABLE 4 ABOUT HERE]



Again, looking first at kappa 1, the Chow test statistic strongly suggests breaks at all the
points remaining. However, the change-in-trend test also suggests changes in all but one of
these instances, and further combining the trends in the one instance where no change is
suggested results in significant positive serial correlation. In fact, one of the combinations
carried out has also resulted in a single case of positive serial correlation; however, looking
at the results in Figure 2 suggest that this is more likely to be a result of random clustering

than two separate trends having been combined.

[FIGURE 2 ABOUT HERE]

The single change in kappa 1 is less controversial — the Chow test and the change in trend
analysis both suggest that no further changes are needed, and the DW statistics do not

suggest that any trends have been combined incorrectly.

One reported statistic has not been discussed in detail: the DF statistic. For kappa 1, the DF
test suggests that the data follows random deviations around a trend in six out of eight
periods; for kappa 2, the figure is seven out of nine periods. In most case, the level of

significance is 1%.

4. A Projection Approach

Having fitted a model to the data, | next look at some of the parameters with a view to using

this data to project mortality forward.
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The trend in kappa 1 changes 7 times out of a possible 164 times, a probability of 0.036585;
the trend in kappa 2 changes 8 times in the same period, a probability of 0.054878.
However, kappa 1 and kappa 2 change together only six of these times. These changes can
therefore be modeled by simulating a uniform random variable, 0% &= 1, such that:

e if 0% &= 0.006098 then kappa 1 only changes;

e if0.006098% &z (0.042683 then kappa 1 and kappa 2 change;

e if0.042683% Bx= 0.054878 then only kappa 2 changes; and

e if &= 0.054878 then neither kappa 1 nor kappa 2 change.

The next stage is to look at the variation in kappa 1 and kappa 2 when they change. One
approach would be to consider the root mean square (RMS) of deviations and use these to
define the volatility. This would mean essentially assuming that the expectation was for the
current trends in kappa 1 and kappa 2 to continue indefinitely, with each being as likely to
accelerate as to decelerate. The alternative is to use the standard deviation. This would
give a lower level of volatility, but would require an assumption that changes in kappa 1 and
kappa 2 would be expected to accelerate or decelerate (depending on whether the average
was positive or negative). This latter view seems unrealistic, as it suggests that both kappa 1
and kappa 2 would eventually tend towards positive or negative infinity. | therefore use the
RMS approach. | also calculate a measure of correlation between kappa 1 and kappa 2
when both change using a similar approach, calculating a measure of covariance based on
deviations from zero rather than from the mean, then dividing the result by the RMS of
kappa 1 and kappa 2. The correlation calculated by this method is -0.301142, compared
with the “true” correlation of 0.380513. Given that the two series appear to move in
opposite directions, the negative correlation seems more plausible.

11



When both kappa 1 and kappa 2 change, the RMS volatility of the former is 0.008406
(compared with a standard deviation of 0.005597) and of the latter is 0.000405 (compared
with a standard deviation of 0.000352). However, the RMS volatility for kappa 1 using all
changes is 0.015998 (compared with a standard deviation of 0.013719), and for kappa 2 is
0.000332 (compared with a standard deviation of 0.000287). An F-test suggests that the
volatility differs for kappa 1, but only at the 10% level; there is no significant difference for
kappa 2. However, the small number of observations means that it is difficult to draw any
strong conclusions. In the analysis below, | use the same volatility when only one variable

changes or one both change.

Finally, given that the data is to be modeled assuming random volatility around a trend, the
nature of this volatility needs to be investigated. Analysis of the standard deviation of the
errors shows that the volatility decreases successively in each period, but there is a
particularly large and sustained fall for both kappa 1 and kappa 2 in 1973. | therefore
assume that the volatility around the trend is given by the volatility calculated using data

since this date, 0.012098 for kappal and 0.000627 for kappa 2.

5. Projection Results

Using the method and data above, | carry out 1,000 simulations of kappa 1 and kappa 2. |
then use these to calculate the period life expectancy of a 60-year old male for the fifty year
period from 2006 to 2056. | show the results in Figure 3, below. Displayed are the median

and various percentile limits, together with three sample paths.
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[FIGURE 3 ABOUT HERE]

This shows that the range of results in early years is relatively narrow, but uncertainty does
grow rapidly. Toillustrate, the difference between the 5™ and the 95" percentiles for
period life expectancy in 2056 is 18.7 years. Dowd et al (2008) perform similar calculations
to arrive at cohort (rather than period) life expectancies for 65 year old males for the same
projection period (2006 to 2056), using a version of the CBD model that allows for cohort
effects. If parameter uncertainty is ignored, the 90% confidence interval in 2056 spans 3.6
years; even if parameter uncertainty is allowed for, the range rises to only 7.6 years. In
other words, this trend-change model suggests more than twice as much uncertainty as the
cohort-adjusted CBD model with parameter uncertainty over a fifty-year time horizon, and
the shape of the funnel suggests that the difference in uncertainty continues to increase.
This is because the effect of a single change in the trend increases over time. Furthermore,
an offsetting change in the trend at some point in the future would not bring the parameter
back to its original value, meaning that the overall level of uncertainty grows rapidly when
looking at long time horizons. This is not the case for a random walk, where the trend is

unaffected by random variation.

6. Conclusion

If a two parameter model of the type described by Cairns et al (2006) is used to model
mortality, then the parameters follow clear trends that change periodically. The changes in
the parameters frequently occur at the same time and are negatively correlated. Within

each trend, the parameters do seem to be random fluctuations around a trend rather than

13



random walks. Modeling mortality this way into the future suggests a much greater degree

of uncertainty than some other models.
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Tables and Figures
Figure 1 — Kappa 1 and Kappa 2 for the CDB Model, 1841-2005
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Figure 2 — Kappa 1, Kappa 2 and Fitted Lines, 1841-2005
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Figure 3 — Historical and Projected Period Life Expectancy for 65 Year Old Males, England
and Wales, 1841-2056
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Table 1 — Parameters for Fitted Values of Kappa 1

First Kappa 1
Year of Intercept Kappa 1 DW A Kappa 1 Chow Test
Trend (SE) Slope (SE) Statistic DF Statistic Slope (SE) Statistic
1841 -2.96683 0.000168 1.701532 -3.518565 *

(4.994174) (0.002700) 0.006502  ** 3.694137 **
1860 -15.0547 0.006671 1.219745 + -2.279956 (0.002856)

(5.491361) (0.002943) -0.007657  *** 2.668865 *
1873 -0.72055 -0.000986 1.496792 -4,129292  ** (0.002069)

(2.678539)  (0.001419) -0.005125  *** 13.189975  ***
1902 9.021928 -0.006111 1.256072 ++ -3.055781 (0.001407)

(2.679251)  (0.001399) -0.001805 0.355020
1930 12.50438 -0.007917 1.042455 ++ -2.349303 (0.002875)

(7.156921) (0.003695) 0.008425 5.760253 **
1945 -3.87419 0.000509 1.974323 -2.828847 (0.006203)

(15.239244)  (0.007817) -0.003804 3.221651 *
1955 3.558806 -0.003295 1.950550 -4,133678  ** (0.005403)

(2.530577)  (0.001289) -0.011955  *** 26.251961  ***
1973 27.13348 -0.015250 1.784664 -3.667513  ** (0.001123)

(1.875906) (0.000948) ~ -0.009425 ** 23.103952  ***
1988 45.85149 -0.024675 2.584364 -5.415041  *** (0.003682)

(10.024917) (0.005033) -0.008391 48.665600 ***
1998 62.6076 -0.033066 1.951402 -2.331239 (0.005222)

(10.800210)  (0.005396)

Significance level: *** 1%; ** 5%; * 10%.

Serial correlation: ++ evidence of significant positive serial correlation (statistic <dL); +
evidence of possible positive serial correlation (dL<statistic<dU).

Table 2 — Parameters for Fitted Values of Kappa 2

First Kappa 2
Year of Intercept Kappa 2 DW A Kappa 2 Chow Test
Trend (SE) Slope (SE) Statistic DF Statistic Slope (SE) Statistic
1841 0.019917 0.000031 2.503566 -5.360380  ***

(0.150937) (0.000082) ~ -0.000344  ** 1.727529
1860 0.658869 -0.000313 1.148115 + -2.600994 (0.000126)

(0.272553) (0.000146) ~0.000385 *** 12.562046  ***
1873 -0.06094 0.000072 1.535067 -4.872952  ***  (0.000092)

(0.080100) (0.000042) - 0.000574  **x* 94.695468  ***
1902 -1.15299 0.000646 2.402800 -6.538536 ***  (0.000041)

(0.078094) (0.000041) ~ -0.000800  *** 76.076018  ***
1930 0.389713 -0.000154 1.348259 + -4.161198  ** (0.000073)

(0.178596) (0.000092) ~0.000512  *** 40.616383  ***
1945 -0.60562 0.000358 2.369726 -3.530067 * (0.000141)

(0.339579) (0.000174) - -0.000430  *** 85.953783  ***
1955 0.234761 -0.000072 2.138283 -4.409199 ***  (0.000125)

(0.108824) (0.000055) ~0.000430 *** 29.847510  ***
1973 -0.61336 0.000358 1.178452 + -2.773581 (0.000056)

(0.110733) (0.000056) ~0.000141 ** 11.426100  ***
1988 -0.89299 0.000499 2.166787 -4.649186 ***  (0.000064)

(0.142363) (0.000071) - -0.000346  *** 69.007492  ***
1998 -0.20282 0.000154 1.330504 + -2.244186 (0.000063)

(0.107361) (0.000054)

Significance level: *** 1%; ** 5%; * 10%.

Serial correlation: ++ evidence of significant positive serial correlation (statistic <dL); +
evidence of possible positive serial correlation (dL<statistic<dU).
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Table 3 — Revised Parameters for Fitted Values of Kappa 1

First Kappa 1
Year of Intercept Kappa 1 DW DF A Kappa 1 Chow Test
Trend (SE)  Slope (SE) Statistic Statistic Slope (SE) Statistic
1841 -2.96683 0.000168  1.696690 -3.518565 *

(4.994174) (0.002700) 0.006537 ** 5.133120 ***
1860 -15.12 0.006706 1.220154 + -2.279956 (0.002856)

(5.491361) (0.002943) -0.007700  *** 8.041144  ***
1873 -0.70505  -0.000995  1.495064 -4,129292  ** (0.002069)

(2.678539) (0.001419) -0.005182  *** 16.802856  ***
1902 9.145043  -0.006176  1.447660 ++  -4.727278 *** (0.001046)

(1.434794) (0.000746) 0.003530  *** 6.216409  ***
1945 2.28253 -0.002646 1.673548 -4,705058  *** (0.000809)

(1.673403) (0.000854) -0.012966  *** 33.455055  ***
1973 27.8521 -0.015612 1.885997 -3.667513  ** (0.000992)

(2.180101) (0.001101) -0.008897  ** 100.169916  ***
1988 4552208  -0.024510 2.629184 -5.415041  *** (0.003612)

(9.768575) (0.004904) -0.008834 32.807038  ***
1998 63.16286  -0.033343  2.030812 -2.331239 (0.005106)

(10.588903)  (0.005290)

Significance level: *** 1%; ** 5%; * 10%.

Serial correlation: ++ evidence of significant positive serial correlation (statistic <dL); +
evidence of possible positive serial correlation (dL<statistic<dU).
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Table 4 — Revised Parameters for Fitted Values of Kappa 2

First Kappa 2
Year of Intercept Kappa 2 bDw DF A Kappa 2 Chow Test
Trend (SE) Slope (SE) Statistic Statistic Slope (SE) Statistic
1841 0.255659 -0.000097 1.863737 -5.240416  ***
(0.069743) (0.000038) 0.000127  *** 3.351952  **
1873 0017483 0.000030  1.903972 6725793 *** (0.000038)
(0.071755) (0.000038) 0.000619  *** 109.848615  ***
1902 1159045 0.000649  2.419991 2656571 ***  (0.000040)
(0.078098) (0.000041) -0.000803  *** 71.745047  ***
1930 0.389737 -0.000154 1.331124 + -3.071266  ** (0o.ooo074)
(0.181001) (0.000093) 0.000512  *** 40.299153  ***
1945 0605591 0.000358  2.377781 3264308 *  (0.000141)
(0.338518) (0.000174) -0.000430  *** 79.795420  ***
1955 0234785  -0.000072  2.133573 3613035 *** (0.000125)
(0.109126) (0.000056) 0.000430  *** 30.105090  ***
1973 -0.613332 0.000358 1.215524 + -3.819187 (0.000055)
(0.107336) (0.000054) 0.000141  ** 7.237369  ***
1988 -0.892961  0.000499  2.105288 3912770 *** (0.000065)
(0.146787) (0.000074) -0.000346  *** 58.677171  ***
1998 -0.202798 0.000154  1.414360 -3.978984 (0.000063)
(0.101564) (0.000051)

Significance level: *** 1%; ** 5%; * 10%.

Serial correlation: ++ evidence of significant positive serial correlation (statistic <dL); +
evidence of possible positive serial correlation (dL<statistic<dU).
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