
 
 

DISCUSSION PAPER PI-1006 
 
Decentralized Downside Risk Management 
 
Andrea Reed, Cristian Tiu and Uzi Yoeli 
 
November 2009 
 
ISSN 1367-580X  
 
The Pensions Institute  
Cass Business School  
City University  
106 Bunhill Row London  
EC1Y 8TZ  
UNITED KINGDOM  
 
http://www.pensions-institute.org/  



Decentralized Downside Risk Management∗

Andrea Reed† Cristian Tiu‡ Uzi Yoeli§

November 2, 2009

∗We thank Bob Boldt, Keith Brown, Chad Burhance, Steve Dimmock, Zoubair Esseghaier,
Gifford Fong, Charles Tate, Sheridan Titman and participants at the 2006 Risk Conference for
comments. The opinions expressed in this paper are not necessarily those of Perella Weinberg
Partners or UTIMCO.

†Perella Weinberg Partners, 401 Congress Avenue, Suite 3000, Austin, TX 78701; tel. (512)
287-7117; email: areed@pwpartners.com

‡Corresponding author. School of Management, University at Buffalo, 366 Jacobs Management
Center, University at Buffalo, Buffalo, NY 14260; Email: ctiu@buffalo.edu; Tel. (716) 645-3299.

§The University of Texas Investment Management Company, 401 Congress Avenue, Suite 2800,
Austin, TX 78701; tel. (512) 225-1644; email: uyoeli@utimco.org



Decentralized Downside Risk Management

Abstract

The process of risk management for institutional investors faces two challenges. First,
since most institutions are decentralized as opposed to being direct investors in assets, it is
difficult to separate the risks of the assets in the portfolio from the risks generated by the
investment decisions by the fund management to construct the portfolio. To address this
issue, we propose a risk measurement methodology which calculates the risk contributions
of individual securities and investment decisions simultaneously. This decomposition is ap-
plicable to any decentralized investor as long as its relevant risk measurement statistic can
be additively decomposed. Second, statistics used to measure risk may not coincide with
institution-specific investment risks, in the sense that the utility employed in asset allocation
may be unrelated to the risk measure utilized. For example, an institution may do mean-
variance asset allocation, but inconsistently measure the risk of the portfolio using Value at
Risk. We apply this methodology to a particular type of decentralized investor, specifically,
endowment funds where the relevant risk statistic is the downside risk of returns relative
to actual payout levels, plus inflation. We show how downside risk can be decomposed and
apply our simultaneous downside risk decomposition empirically on a sample of U.S. endow-
ment funds. We find that an endowment’s asset allocation to U.S. Equity, consistent with
having the largest weight in the average endowment portfolio, generates about 50% of total
endowment returns but almost 100% of total portfolio downside risk. We further find that
tactical allocations (or timing) have economically small contributions to both returns and
risk. Finally, we find that the allocations to U.S. Fixed Income and to Hedge Funds as well
as active investment decisions (except for tactical) contribute positively to returns, while
reducing portfolio downside risk. The risk contributions are sensitive to changes in payout
levels and an increase in the latter may offset the risk reducing power of active investing.
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1 Introduction

In the context of recent financial meltdowns, the need for institutions to bolster their risk

management capabilities has never been greater. Recently, the Federal Reserve Chairman

declared that “improvements in banks’ risk management will provide a more stable financial

system by making firms more resilient to shocks”.1 Recently, however, we learned that many

financial institutions were considerably riskier than previously thought and witnessed in

the wake of catastrophic market conditions their devastating and costly collapse. Whereas

market risk cannot be controlled, the decision to take on this risk can be. Thus, the following

question arises: has the overall risk of these institutions increased because the markets

in which they were invested became riskier, or because the institutions knowingly chose

to invest in these markets? As the latter risks can be managed, answering this question

means identifying at which point in the investment process of a decentralized, complex

organization, decisions were taken that led to significant changes in the overall risk of the

institution. This paper’s aim is to propose a methodology that provides such an answer.

Since our methodology is specifically designed for decentralized, or “top-down” investors, it

is applicable to many types of institutions such as mutual and hedge funds, funds of funds,

pension funds, endowments and foundations.

In decentralized organizations, the portfolio of the institution is a sum of not only the

individual securities but also of the investment decisions made by fund management to

construct the portfolio. We often find that in stratified investment structures, the interests

of the investment staff are not aligned. There may be discrepancies between the utility

function of the Chief Investment Officer (CIO) and the utility functions of investment staff

of the fund, who are responsible for the implementation of the investment decisions of the

CIO. The result is that the management structure itself adds to the overall risk of a portfolio.

For example, a U.S. Equity manager may decide to invest in a 130-30 fund in order to enhance

her adjusted returns. This manager may be what Leibowitz (2005) calls a “beta grazer”:

by making the decision to invest in a hedge fund-like product, the manager adds an active

component to her portfolio that will be correlated with an index representative of hedge

funds. This investment decision may thus reduce the diversification effect between hedge

1From Ben Bernanke’s keynote speech at the 44th Annual Conference on Bank Structure and Competition
in Chicago, May 14-16, 2008.
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funds and U.S. Equity, and shift the overall risk of the portfolio away from what the CIO

may consider optimal.2 Although the U.S. Equity manager may find the 130-30 investment

appropriate for her portfolio, the CIO’s utility function may dictate a higher level of portfolio

risk and a lower overall exposure to hedge funds. In order to capture such potentially risky

behavior, the risk management methodology proposed in this study simultaneously addresses

the risks contributed by investment decisions as well as by individual securities. We refer to

this risk measurement methodology as simultaneous risk decomposition.

Utility discrepancies do not stem only from the multilayered nature of investment man-

agement, but also from the way risk is measured. In particular, the risk statistics traditionally

used to measure risk may not relate to the utility function of the CIO. For example, the main

cause of concern for an investor facing a liability – and the most significant source of risk

– is that returns will fall short of the fund’s required payout. In contrast, risk is tradition-

ally measured as Value at Risk, standard deviation, etc., and these risk measures do not

explicitly incorporate an investor’s payout obligation in their calculation. In this paper we

develop a risk measurement methodology which suits an investor facing a liability. We con-

sider that the relevant risk statistic in this case is the downside risk of the portfolio relative

to a minimal acceptable return3. There are several reasons that we focus on this particular

risk statistic. First, it is a measure of risk appropriate for many types of investors: pension

funds facing a liability, university endowments required to meet a payout, hedge funds which

have a watermark, mutual funds attempting to outperform a benchmark, or simply funds

seeking to preserve their value. Second, asymmetry in the returns of asset classes such as

hedge funds require appropriate risk measures. Third, several large university endowments

and pension plans now consider downside risk as an alternative to standard deviation in

their asset allocation process, which traditionally was a mean-variance framework. To avoid

a discrepancy between their utility function (which is of mean-downside risk type), these

institutions also need to use downside deviation as a risk measure. However, risk decompo-

sition methodologies are nonexistent for downside risk. For these reasons we propose a risk

management methodology based on downside risk.

2In our empirical analysis we document that adding more hedge funds to the portfolio in fact reduces the
total downside risk.

3This risk statistic is also referred to as target semi-deviation.
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To illustrate empirically, we apply our simultaneous risk decomposition methodology to

portfolios of actual U.S. endowment funds from the 2005 National Association of College

and University Business Officers (NACUBO). Consistent with our understanding that most

endowments are traditional investors, holding about 43% of their portfolio in U.S. Equity,

we find that the long term allocation to this asset class generates most of the returns and

downside risk. Our findings further indicate that the allocation to U.S. Equity generates only

about 45% of a typical endowment’s portfolio returns, but 94% of the portfolio downside

risk. It is the long term allocation to U.S. Fixed Income and to alternative asset classes

such as Hedge Funds that reduce the downside risk of the portfolio, while at the same time

contributing positively to the overall return.

The risk reduction effect of Hedge Funds is a surprising finding of our analysis. An

endowment fund’s average allocation to hedge funds is 11.23%, which is about half of that

to U.S. Fixed Income (the average allocation to fixed income is 19.95%). Each asset class

contributes to returns in equal proportions (about 15%) and reduces risk (by as much as

8% in the case of Hedge Funds). This finding debunks the somewhat traditional belief that

hedge funds are high-risk assets. In a similar vein, we find that the active component of

an endowment’s portfolio reduces overall downside risk. This evidence is suggestive of good

security selection skills of university endowment managers.

Furthermore, we study the sensitivity of our risk decomposition to the payout level. We

find that varying the payout level has the potential of changing not only the magnitude of the

risk contributions of investment decisions and portfolio holdings, but also our conclusions

about whether those portfolio components add to overall risk or reduce it. For example,

holding cash reduces the overall downside risk of the portfolio if the payout level is low.

However, for higher payout levels, holding cash increases the difficulty of achieving the

required payout level. Thus, cash adds to the overall risk of the portfolio. This example

illustrates how risk management can give different answers when different risk statistics are

applied, and highlights the importance of customizing the ways in which investors measure

risk. Another important finding from our our analysis is that the risk reducing power of active

management disappears as payout levels increase. Typically endowment payouts are a fixed

proportion of the moving average of the fund value. Therefore, as returns fall payout ratios
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for these institutions will rise and =active investing, which does not contribute significantly

to performance in the first place, will in addition no longer reduce portfolio risk.

Our paper contributes to literature in several ways. First, by providing a risk manage-

ment methodology for decentralized investors, it complements studies such as van Binsbergen

et al. (2008) that address portfolio optimization rules for such investors. By proposing a

method to simultaneously evaluate the risk contributed by investment decisions and individ-

ual securities, we extend the literature that deals with risk decomposition across securities

and separately across investment decisions.4 Second, we complement the literature dedicated

to mean-downside risk portfolio construction and equilibrium asset pricing, such as Hogan

and Warren (1974), Ang et al. (2006) or Morton et al. (2006), by proposing a decomposition

method for downside risk. This extends the well known decomposition methodologies for

homogenous risk statistics such as Value at Risk, standard deviation and expected shortfall

to downside deviation from a fixed return. By providing an intuitive interpretation to this

formula we add to the works of Gouriéroux et al. (2000), who provides an intuitive under-

standing of the decomposition of Value at Risk and of Scaillet (2002), who offers a similar

approach for expected shortfall. By arguing for downside risk as a risk statistics we respond

to arguments such as those of Fung and Hsieh (2002) who point out potential problems in

measuring the risk of hedge funds portfolios as standard deviation. Finally, having proposed

a risk management methodology that, in our view, is suitable to endowment funds, we apply

it to actual data for U.S. endowments. We thus contribute to the literature on endowment

funds, such as Lerner et al. (2007), Lerner et al. (2008), Brown et al. (2008) and Dimmock

(2008). However, unlike these papers which analyze issues related to the performance of uni-

versity endowments, our paper is focused on the analysis of the sources of risk in endowment

portfolios.

The remainder of the paper is organized as follows. Section 2 outlines the risk method-

ology we propose, consisting of the simultaneous decomposition of risk across investment

decisions as well as individual securities. Section 3 presents the mathematics of the downside

risk decomposition. Section 4 applies this methodology to endowments from the NACUBO

database. Section 5 concludes.

4See Pearson (2002) for a review.
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2 Decentralized Portfolio Decomposition

In an attempt to generate additional performance, either by market timing or by security

selection, the CIO of an investment company such as a pension fund, university endowment,

hedge fund or mutual fund would typically delegate the responsibility to invest in various

asset classes to managers who specialize in those respective asset classes. Consequently, there

are multiple steps by which the portfolio of the institution is constructed, i.e., the institution

is decentralized as described in van Binsbergen et al. (2008). In such funds, a Board

together with senior fund management allocate the portfolio to a variety of asset classes on

an infrequent basis. After agreeing upon these broad investment directions with the Board,

senior management of the endowment has the ability to adjust the actual portfolio away from

the broad, long term allocations. This reallocation may be the result of an active decision

to time the markets or a result of specific market conditions which may make it difficult

to rebalance the weights of less liquid asset classes. Asset class managers who report to

the CIO then implement these decisions within their respective asset class. These managers

either select securities directly or invest through external or internal managers. In the latter

case, the asset class managers specify the benchmarks against which the performance of the

external managers in their portfolio is judged. These benchmarks may not be identical to

the indices that are representative of the broad asset class in which they are invested. Thus

several strata of decentralization emerge. First, the CIO may allocate the portfolio in a

manner that does not maximize the utility of the Board. Second, the asset class managers

may choose to invest differently from their asset class benchmarks, either through external

managers or though direct holdings. Finally, the external managers may depart from the

benchmarks against which they are evaluated. These levels of decentralization have the

potential to reduce the utility function of the Board and it is important to identify which

strata, and/or what securities increase or decrease the risk of the portfolio relative to the

case where the institution is centrally managed.

In the following section we model the typical “top-down” portfolio structure that charac-

terizes decentralized investors and decompose the portfolio relative to both decision strata

and individual securities simultaneously.
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2.1 The general case

A portfolio is usually thought of as a combination of securities. As explained above, we

expand this definition by adding that a portfolio is also a combination of investment decisions

that determine the weights of the securities.5 In a “top-down” organization, these weights

are the result of a stratified investment decision process. Thus, we start the decomposition

by recognizing that the portfolio is a sum of the returns of the portfolios generated by each

investment management stratum. Thus, for a portfolio with returns P we write:

P = D1 + D2 + ... + DK , (1)

where D1, ..., DK are portfolio returns generated by the investment decisions 1, ..., K.

We call this the investment decision decomposition of the portfolio because it reflects the

stratified nature of the decentralized investment process. Specific to the investment decisions

decomposition of the portfolio is that each portfolio with returns D1, ..., DK is obtained by

maximizing a utility function specific to the investment decision making strata 1, ..., K. For

example, the portfolio D1 maximizes the utility of the most senior investment decision maker,

D2 is the correction to D1 made by the subsequent decision maker so that D1+D2 maximizes

the more junior decision maker’s utility function, and so on.

Denoting the return of an individual security i from portfolio Dk by Sk,i, the returns of

each investment decision making strata D can be further disaggregated as

Dk = wk
1Sk,1 + ... + wk

nk
Sk,nk

, k = 1, ..., K. (2)

We refer to this as to the asset decomposition of our portfolio returns. Here, “asset” refers

to the asset weights wk
i , i = 1, ..., nk that are obtained at the same investment management

level within the organization.

It is important to note the fundamental difference between the investment decision and

the asset decompositions. While the former decomposes the portfolio along the structure of

the organization, which needs not be optimal, is usually given and in most cases cannot be

modified, the latter decomposes portfolios constructed by maximizing the utility functions of

5Here, we understand securities as a subset of all the available securities considered by the management
of the fund in question.
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the investment decision maker at each investment stratum. At any given level of the invest-

ment management structure, these portfolios may be changed by the investment manager

responsible for their construction. The act of modifying these portfolios in order to satisfy

various risk considerations represents active risk management.

Summing the returns from the investment decision strata (the investment decision de-

composition in different columns) with the returns of the portfolios within the strata (the

asset decomposition in different rows), the return of the portfolio can be written as

P =

w1
1S1,1

+
.
.
.
+

w1
n1

S1,n1

+

.

.

.

.

.

+

wK
1 SK,1

+
.
.
.
+

wK
nK

SK,nK

(3)

This type of return decomposition has precedent. For example, similar to our investment

decision decomposition, Daniel et al. (1997) decompose the returns of a portfolio according

to whether they were generated by passive, long term investing, market timing or security

selection. Brinson et al.(1986) and Blake et al. (1999) propose a similar decomposition for

pension plans. As it is the case with our asset decomposition, other authors (see Pearson

(2002)) decompose portfolio risk into the risk contributions of individual securities. Our ap-

proach is novel, however, as it performs the two distinct decompositions (investment decision

and asset) simultaneously. As a convention, in tables throughout this paper we shall present

the asset decomposition across rows while presenting the investment decision decomposition

down columns.

2.2 An example from endowment funds

We continue by particularizing this decomposition for the case of endowment funds, which

are a perfect example of decentralized investors. The structure of such a fund is outlined

graphically in Figure 1. In the discussion which follows we describe the decision process by

which an endowment fund arrives at its portfolio.
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1. The Asset Allocation decision The asset allocation decision is the process by which

an endowment selects the long term asset class mix that best suits its long term objectives.

The responsibility of this decision belongs to the Board of the endowment. The result of this

process is a set of weights which, combined with the proper asset class benchmarks, forms

the endowment’s policy portfolio. If the returns of the relevant asset class benchmarks are

respectively rP
1 , ..., rP

N and the fund invests in the proportions denoted by wP
1 , ..., wP

N in

each of these asset classes, then the returns of the policy portfolio are:

RP =

wP
1 rP

1

+
...
+

wP
NrP

N

. (4)

For example, we assume that the fund XYZ, with $100 million in assets, invests in two

main asset classes, U.S. Equity and Inflation Hedge (summary statistics of these asset classes’

returns are presented in Table 2). The performance benchmark for U.S. Equity is the Russell

3000 Index, and for Inflation Hedge, the Merrill Lynch Inflation Linked Notes Index. In this

first step of the investment management process, that of asset allocation, the Board of the

XYZ fund agrees on a policy portfolio B characterized by the weights wP
useq = 50% and

wP
inflink = 50%.

2. The Tactical Asset Allocation decision The CIO of an endowment fund may elect

to diverge from the long term allocation targets set by the Board in an attempt to “market

time”, or as a result of specific market conditions which may make it difficult to rebalance

the weights of less liquid asset classes. That is, instead of investing wP
i in asset class i, the

endowment CIO may choose to allocate wi to the respective asset class, thus changing the

policy weight wP
i by wT

i := wi − wP
i . The contribution of the tactical component to the

endowment’s returns is:
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RT =

wT
1 rP

1

+
...
+

wT
NrP

N

. (5)

This expression captures the return that is achieved by over- or underweighting the policy

portfolio weights in an effort to increase the returns or change the risk profile of the fund.

To exemplify, we assume that the CIO of the XYZ fund considers the long term as-

sumptions shown in Table 2 unrealistic, as she expects equities to decline in the short term.

Consistent with her investment viewpoint, the CIO makes the tactical decision to invest

wuseq = 40% and winflink = 60%. Each asset class is managed internally by an asset class

manager. After the CIO determines the tactical asset allocation, the U.S. Equity manager

receives $40 million to invest, while the Inflation Hedge manager receives $60 million.

3. Benchmark selection decision After the CIO determines the weights w to various

asset classes, for each asset class i the implementation of the actual weights wi falls to the

investment manager of the respective asset class. The asset class manager may choose to

invest in either external or internal managers, or directly in individual securities. These

managers, or securities, with returns denoted by ri
j, j = 1, ..., Mi, are evaluated in turn

against more specific benchmarks, with returns denoted by rB,i
j . The investment decisions

made by the asset class managers contribute to the overall returns of the fund by steering

the fund’s allocation from the passive indices rP
i that are representative of each asset class

toward the more specific (and thus different) indices rB,i
j . Assuming that in each asset class

i, the external/internal manager or individual security j, whose performance is evaluated

against the benchmark rB,i
j , receives the weight wi,j, the contribution RB of the choice of

internal benchmarks to the overall portfolio return is given by:
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RB =

(∑M1

j=1 w1,jr
B,1
j − w1r

P
1

)

+
...
+(∑MN

j=1 wN,jr
B,N
j − wNrP

N

)
, (6)

where for each asset class i we have that
∑Mi

j=1 wi,j = wi. That is, the individual weights of

the securities chosen in asset class i sum to the total weight assigned to the asset class in

the portfolio.

For our example of the fund XYZ, we assume that instead of investing in the Russell

3000 Index (which is combination of approximatively 92% of the Russell 1000 Index and 8%

of the Russell 2000 Index), the U.S. Equity manager makes the active decision to invest $20

million in a large cap external manager and $20 in a small cap manager. The U.S. Equity

manager prefers to evaluate the large cap manager against the S&P 500 Index, and the

small cap manager against the Russell 2000 Index. In the investment guidelines, the U.S.

Equity manager is allowed some flexibility on how closely each external manager follows its

prescribed benchmark.

Similarly, the Inflation Hedge manager makes an active investment decision by choosing

to invest in a combination of TIPS and commodities rather than investing 100% of his $60

million allocation solely in TIPS. He benchmarks the TIPS investment against the policy

benchmark for the Inflation Hedge asset class, which is the Merill Lynch Inflation Linked

Notes Index and the commodities manager against the Goldman Sachs Commodities Index.

A summary of the fund’s portfolio is presented in Table 1.

4. The Active (Security Selection) decision After each internal or external manager

security is assigned a benchmark the responsible investment manager (whether internal or

external) makes the actual investment. This investment will generate returns that differ from

its benchmark. The same is true for investments in individual securities, whose returns may

also be different from those of their corresponding benchmarks. This differential represents

the active security selection return component in an endowment’s portfolio. If the actual
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returns of the security j of asset class i with a portfolio weight of wi,j are ri,j, then the active

or security selection contribution to the fund’s returns is:

RA =
N∑

i=1

Mi∑
j=1

wi,j(ri,j − rB,i
j ). (7)

In points 1-4 we have described the decision making components D for a top-down,

stratified investment process as is the case for the typical endowment fund. We refer to the

decomposition of each of these components as the asset decomposition of a portfolio. The

set of decision making components forming the investment decision decomposition of the

fund’s portfolio is represented simply by:

R = RP + RT + RB + RA. (8)

In this case formula (3) specializes to the following:

Asset Tactical Benchmark Active
Alloc. Alloc. Selection Alloc.

R =

wP
1 rP

1

+
...
+

wP
NrP

N

+

wT
1 rP

1

+
...
+

wT
NrP

N

+

(∑M1

j=1 w1,jr
B,1
j − w1r

P
1

)

+
...
+(∑MN

j=1 wN,jr
B,N
j − wNrP

N

)
+

w1,1(r1,1 − rB,1
1 )

+
...

w1,M1(r1,M1 − rB,1
M1

)
+
...
...
+

wN,1(rN,1 − rB,N
1 )

+
...

wN,MN
(rN,MN

− rB,N
MN

)

(9)

The advantage of simultaneously analyzing the investment decision as well as the asset

decomposition is apparent when we measure the risk of the entire portfolio. Individual

security contributions can, in fact, be correlated with the returns contributions of investment
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decisions. Such relationships cannot be captured unless we evaluate the risk of the portfolio

whollistically.

In our example, in order to establish the effect of each of these investment decisions on

the XYZ portfolio, we use historical data for the policy indices (Russell 3000 index for U.S.

Equity and the Merrill Lunch Inflation Linked Index for the Inflation Hedge), as well as for

the external manager benchmarks (Merill Lynch Inflation Linked Notes Index for TIPS, the

Goldman Sachs Commodities Index for commodities, the S&P 500 Index for the large cap

U.S. Equity and the Russell 2000 Index for small cap U.S. Equity). For the external managers

(who create the active component of the portfolio), we make the assumption that their added

value (relative to the benchmarks they are assigned) are independent of each other and of

the benchmarks, and log-normally distributed.6 The capital market assumptions applied to

the assets of XYZ are presented in Table 2. The return contributions of each component to

the overall expected return of the fund, 11.78%, are presented in Panel A of Table 3.

From Panel A of Table 3 we see that the largest contribution to the portfolio’s return

comes from the tactical decision to overweight the allocation to the Inflation Hedge asset

class. At the same time the worst contributor to performance is the tactical decision to

underweight U.S. Equity. Overall, however, the tactical allocation makes a positive contri-

bution to returns (equal to -0.84% + 5.12%).

This is in contrast with what we would obtain if we decompose the portfolio solely

across the asset classes in which the fund is invested, namely, U.S. Equity and Inflation

Hedge. In the policy portfolio of the fund, the main return generator is the U.S. Equity

asset class: it generates 4.19% of the returns, while only 2.56% come from Inflation Hedge.

However, if we were to decompose the portfolio solely across asset classes and not consider

investment decisions, then the main return generator would be the Inflation Hedge asset

class: it generates 7.90% of the returns, as compared to only 3.88% generated by the U.S.

Equity.

Having decomposed the returns, we now turn to the decomposition of risk. We proceed

with the general risk decomposition formula and illustrate numerically on the fund XYZ.

6We use log-normal returns in order to provide an example of distributions that are not symmetric.
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3 Downside Risk Decomposition

In this study we define risk as semi-deviation from a target and refer to it as downside risk

for brevity. The concept of downside risk is not novel in finance. Markowitz (1959, 1991)

argues that it is natural for an investor to prefer a low risk to the downside, instead of a low

variance (upside and downside) of portfolio returns, but he also recognizes the computational

challenges associated with the use of downside risk.7 One may question the usefulness of

downside risk when returns are symmetrically distributed (e.g., when the returns are nor-

mally distributed) or when there is no payout obligation. In those specific cases, minimizing

downside risk from the expected return and minimizing the standard deviation are equiva-

lent. Moreover, one may argue, by the law of large numbers, well diversified portfolios have

return distributions approximating normal and the normal distribution in particular is sym-

metric. The assumption of normality becomes problematic, however, when used to assess the

risk of asset classes such as hedge funds which may not have symmetric distributions (Brooks

and Kat (2002)). First, for hedge funds, using standard deviation as a measure of risk may

also yield results that differ from the case of traditional assets such as U.S. Equity (Fung

and Hsieh (2002)). Second, and more importantly, in bad times correlations among assets

increase (Ang and Chen (2002)), which violates one of the key assumptions of the central

limit theorem (that of independence). It is conceivable, therefore, that the overall portfolio

returns of even well diversified portfolios are asymmetric, thus measuring the downside risk

of endowment returns may offer special insight. Use of downside risk as a risk criteria – in

place of variance – has also been suggested by Hogan and Warren (1974) and by Bawa and

Lindenberg (1977), who develop a downside risk-based CAPM model. Van Harlow (1991)

studies portfolio optimization problems involving the minimization of lower partial moments

of returns. More recently, Ang et al. (2006) bring evidence indicating the existence of a

downside risk premium that differs from the market premium.

We now turn to describing the methodology to decompose downside risk. The reader less

interested in the full generality of our decomposition, and seeking a simple example of our

methodology, may skip to Section 3.2.

7For example, at page 77 Markowitz (1991) states that ”One of the measures considered, the semi-
deviation, produces efficient portfolios somewhat preferable to those of the standard deviation”.
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3.1 The mathematics of the downside risk decomposition

In this section we illustrate the methodology for measuring the contribution of portfolio

components to overall downside risk and how to interpret this decomposition. The downside

risk is calculated relative to a minimal acceptable return level (MAR).

As Sharpe (2002) notes, risk statistics are seldom additive; he cites the example of vari-

ance, which is additive if and only if various components of the portfolio are independent.

However, if a measure of risk is homogenous as a function of the portfolio weights,8 then the

risk of the portfolio can be decomposed using the marginal risks of the individual compo-

nents. Such decompositions hold, for example, for standard deviation or for Value at Risk9.

We proceed by developing a similar decomposition for downside risk. For a portfolio with

returns R, the downside risk from the minimal accepted return MAR is defined as

DR(R,MAR) =
√
E [max(MAR−R, 0)2]. (10)

In order to decompose downside risk, we assume that the portfolio return R is a combi-

nation R = w1R
1 + ... + wNRN . Similar to the case of standard deviation or Value at Risk,

it is shown in the Appendix that

DR
(
(w1R

1 + ... + wNRN),MAR
)

=
N∑

i=1

wi
∂DR

∂wi

+ MAR
∂DR

∂MAR
. (11)

The portfolio components in this decomposition of downside risk, however, are not addi-

tive because of the term containing the marginal risk with respect to the minimal accepted re-

turn MAR. In order to obtain an additive decomposition, we denote by I = {t | R < MAR}
the set of states where portfolio returns are smaller than the minimal acceptable return. For

a random variable X, we denote by EI [X] := E[X1I ], where 1I is the characteristic function

of the set I, that is,

1I :=

{
1 , if R < MAR
0 , otherwise.

(12)

8A function f : RN → R is homogenous if and only if f(λw1, ..., λwN ) = λf(w1, ..., wN ).
9See Pearson (2002) for an exposition on risk decomposition.
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With this notation the following is shown in the Appendix:

Proposition 1 The downside risk from a pre-specified level of return MAR of a portfolio

R = w1R
1 + ... + wNRN can be decomposed as:

DR
(
(w1R

1 + ... + wNRN),MAR
)

=
N∑

i=1

wi

(
∂DR

∂wi

+
MAR · EI [MAR−Ri]

DR

)
. (13)

We observe that this decomposition is different from the typical Value at Risk or standard

deviation decomposition. The contribution to risk of each portfolio component i is not

just the weighted marginal downside risk multiplied by the weight. Instead, the marginal

downside risk must be adjusted with a term dependent on whether or not the whole portfolio

earns a return greater than MAR. In a state where the whole portfolio does not earn MAR,

but a particular component i returns more than MAR on average, then in the downside

risk decomposition that component is given more “weight” than just the marginal risk. The

difference accounts for that component’s additional “diversifying power” or ability to “beat”

MAR.

In order to provide an intuitive interpretation for the decomposition of downside risk, we

start by noting that the contribution of the ith component to the downside risk from MAR

of the portfolio R = w1R
1 + ... + wNRN satisfies the following:10

wi

(
∂DR

∂wi

+
MAR · EI [MAR−Ri]

DR

)
=

1

DR
EI

[
(wiMAR− wiR

i) · (MAR−R)
]
. (14)

Combining equations (13) with (14), we obtain that:

DR2 =
N∑

i=1

wiEI
[
(MAR−Ri) · (MAR−R)

]
. (15)

This is nothing more than a decomposition of the total downside variance of the portfolio

from the prespecified MAR. From equations (11)-(15) we observe the following:

10This result is proved in the Appendix.
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Proposition 2 The relative contribution of component i to the total downside risk of a

portfolio with returns R is equal to the relative contribution of component i to the total

downside variance of portfolio, that is:

wi

(
∂DR
∂wi

+ MAR· EI [MAR−Ri]
DR

)

DR
=

wiEI [(MAR−Ri) · (MAR−R)]

DR2
. (16)

The righthandside of the above formula is easily interpreted as follows. First, note that

the righthandside of equation (16) looks very similar to a covariation between the returns

of the entire portfolio and the returns of particular components, where the “covariance” is

calculated on the set on which the total portfolio does not meet the minimal acceptable

return. To further elaborate on our intuition, we observe that on the set I we have MAR−
R > 0. The sign of the term inside of the expectation on the righthandside of equation (16) is

thus determined by whether the returns Ri of the ith component are in excess of MAR and

also by how much MAR exceeds the returns R of the entire portfolio. For example, if on the

set I we have that Prob (I⋂{MAR−Ri > 0}) = 1, then the term inside the expectation on

the righthandside of (16) will be positive and results in the ith component having a positive

contribution to the overall portfolio downside variance and downside risk. Similarly, if on the

set I the component i has returns in excess of MAR (i.e., Prob (I⋂{MAR−Ri > 0}) = 0)

then the term inside of the expectation will be negative and the component i will act as

a downside variance reducer of the entire portfolio. Researchers have previously provided

similar interpretations of the decomposition formulae for other risk statistics, such as Value

at Risk (Gouriéroux et a. (2000)) and expected shortfall (Scaillet (2002)).

Finally, we note that this decomposition relies on on the additivity of the returns of

the portfolio components to the returns of the total portfolio. This naturally raises the

question of whether this type of decomposition can be applied to portfolio of highly nonlinear

strategies, for example such as those followed by certain hedge funds. To address this concern,

we note that a similar decomposition is valid when P&L’s (which are additive), instead of

returns, are used.11

11Such a decomposition is available from the authors upon request.
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3.2 Risk Decomposition for the XYZ Fund

We continue by the decomposing the downside risk for the hypothetical fund XYZ described

in Section 2.2. We assume that MAR = 5%.

The results of the downside risk decomposition - simultaneously across the investment

decisions used to build the portfolio (the investment decision decomposition) as well as the

individual securities held in the portfolio (the asset decomposition)− are presented in Panel B

of Table 3. The largest contribution to portfolio returns is the tactical decision to overweight

the Inflation Hedge asset class, while the largest contribution to risk comes from the asset

allocation decision to invest 50% of the portfolio in U.S. Equity. The active decision to invest

in Commodities as an inflation hedging asset has the negative effect of reducing the returns

by 0.02% (see Panel A of Table 3) but at the same time increasing the downside risk by

1.6% (see Panel B of Table 3). All the external managers add returns to the portfolio while

increasing the risk12.

It is worthwhile to contrast the results of the simultaneous risk decomposition presented

in Panel B with what we had obtained if we considered instead the portfolio decomposition

across the two asset classes, U.S. Equity and Inflation Hedge. If the risk decomposition is

performed solely on these asset classes, each has an equal contribution to total downside risk

(2.9% of the total of 5.8%). Taking this result in isolation, in conjunction with the fact that

Inflation Hedge is an asset class with lower expected returns, the CIO may be incentivized

to shift the asset allocation away from the Inflation Hedge asset class. A complete picture

yielding different conclusions is presented by our simultaneous decomposition. Inflation

hedge has a small contribution of 0.9% to risk in the asset allocation policy, relative to

that of 2.6% of U.S. Equity. The primary reason for the high downside risk generated by

the manager of the Inflation Hedging asset class is a benchmark mismatch between the

benchmark of the entire asset class - the Merrill Lynch Inflation Linked Securities Index

- and the benchmark employed for the sub-asset class of commodities. As a third of her

her portfolio is invested in Commodities, which are considerably riskier than TIPS, the

manager of the Inflation Hedging asset class generates a risk much higher risk than that of

12The fact that active investing increases the risk is not automatic nor obvious. We modeled the fund
XYZ in such a way. Our empirical results, however, document that active investing by U.S. Endowment
funds in fact decreases overall portfolio risk.
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her benchmark index. We would have not been able to arrive at this conclusion using the

classical risk decomposition across asset classes.

4 Returns and Risk Decomposition of U.S. Endow-

ments

In this section we apply the risk management methodology developed in the previous section

to a sample of university and college endowment funds. Our goal is two-fold: one the one

hand to identify the management decisions and assets that contribute the most to the risk

that university endowments do not meet their payout obligations and preserve their capital,

and on the other hand, whether our results change if the payout level is stressed. We start

by describing the data.

4.1 Data

Our data source is the 2005 Endowment Survey, a publication by the National Association of

College and University Business Officers (NACUBO). Although the NACUBO study contains

a plethora of information, we only use the data on target asset allocations, current asset

allocations and actual annual returns. Similar but more extensive data, merged at the time

series level, was used by Brown et al. (2008). Various data from NACUBO are also used by

Dimmock (2008) and by Lerner et al. (2008).

In 2005, NACUBO divided the investment universe for university and college endowments

into 12 different asset classes: U.S. Equity, Non-U.S. Equity, U.S. Fixed-Income, Non-U.S.

Fixed-Income, Public Real Estate, Private Real Estate, Hedge Funds, Venture Capital, Pri-

vate Equity (Buyout), Natural Resources, Cash, and Other Assets. We will refer to the

combination of Venture Capital and Private Equity Buyout as the Private Equity. “Other

Assets” includes assets that are difficult to classify into any of the other broad asset classes.

For a summary of how the weights to these asset classes change over time, as well as for a

summary of endowment performance, we refer the reader to Brown et al. (2008).

As performance (by which in this context we understand raw returns) is available at

annual frequency, and the set of choices consists of 12 asset classes, we only include those

institutions with at least 12 data points – that is, endowments which continuously reported
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for the period 1994 to 2005. Also we only include the endowments which report actual as

well as policy asset allocations. These filters reduce our sample to 281 funds. The summary

statistics of the 2005 target asset allocation weights, actual allocation weights and annual

returns of these 281 institutions are presented in Table 4.

In order to perform the return decomposition outlined in Section 2.2, it is necessary to

specify passive benchmark indices that are representative of the NACUBO asset classes. In

doing so, we were careful to select indices that are commonly used by the industry. Summary

statistics on these passive indices are presented in Table 5.

The level of granularity in the available data is such that we are unable to identify

any internal investment implementation decisions or how these investments are evaluated.

Due to this limitation, we are unable to calculate the Benchmark Selection and the Active

components of the portfolio separately for each asset class; however, in the next section

we shall show that although these return attributions are unknown individually, their sum

across all asset classes can in fact be computed.

4.2 Empirical Endowment Return Decomposition

Having outlined our data we can now describe the decomposition of endowment returns in

our sample. In order to obtain the downside risk decomposition for an endowment we use

the sample counterparts of the expectation terms in equations (11)-(15).13

1. The Asset Allocation component As noted in Section 3.1 actual asset allocation

weights are available in the data as well as target asset allocation weights (or equivalently

policy weights). By combining these weights with the benchmark returns as formula (4)

suggests we can calculate the contribution of each asset class allocation to overall endowment

returns.

13Assume that our sample consists of the returns (Rt, R
1
t , ..., RN

t )t=1:T . An unbiased sample estimate for
the downside risk from a fixed MAR is given by

D̂R =

√∑T
t=1 max (MAR−Rt, 0)2

T
.

This differs from the unbiased sample estimator for standard deviation, in the fact that we divide by T , and
not by (T − 1) under the square root.
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2. The Tactical Asset Allocation component As we have the actual allocation weights

and target weights for each endowment as well as the returns for each asset class representa-

tive index, we are able to compute the return contribution of each tactical decision to under-

or overweight an asset class as in formula (5).

3. The Benchmark selection component Unfortunately, data on how internal man-

agers evaluate their investments are not available, thus it is impossible for us to calculate

the effect of the internal decisions that apply to the selection of benchmarks.

4. The Active component As we do not have data on how various internal investment

are evaluated we cannot calculate the active contribution to overall portfolio returns.

However, from formula (8) the sum of the Benchmark selection and Active return compo-

nents (i.e., RB +RA) is equal with the total return minus asset allocation returns and tactical

returns. As both internal benchmarking as well as deviations from these benchmarks are

active investment decisions, we shall refer to the sum of these former components as “active”

as well. Accordingly, we shall consider the sum of the benchmark selection component RB

and the active component RA, that is, RB + RA as the “active component” of the portfolio.

As total downside risk will differ from one endowment to another, we unitize the return

and risk contributions. Precisely, for a portfolio R = w1R
1 + ... + wNRN we calculate the

returns contribution of component i as the expectation of wiR
i/R. Similarly, using equation

(15), we calculate the relative contribution of the component i as the expectation of:

wi

(
∂DR
∂wi

+ MAR· EI [MAR−Ri]
DR

)

DR
.

Thus, both returns and risk contributions will add up to 100%. Returns and risk contri-

butions in the sense used here have been previously used, for example by Sharpe (2002).

4.3 Return and Risk Contributions: Results and Discussion

In this section we apply the results outlined in Section 2.2 and decompose the downside

risk of each endowment. The first subsection analyzes the risk and return contributions of
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various asset classes and investment management decisions of university endowments, using

their payout ratios plus inflation as target (or minimal acceptable return) for calculating

their downside risk.14 The second subsection analyzed the sensitivity of risk contributions of

various asset classes and management decisions with respect to the choice of the downside

risk target.

4.3.1 Downside risk from inflation adjusted payout

In this subsection we use MAR = payout + inflation as minimal acceptable return, where

payout is the proportion of the endowment wealth paid in a given year and inflation is the

return on the University of Michigan Consumer Price Index. The results are presented in

Table 6.

As Table 4 shows, the dominant average asset class of an endowment portfolio is the U.S.

Equity, which has an average target weight of 43.31% and an actual average weight of 42.38%

. We would expect that U.S. Equity has the largest contribution to the return of an average

endowment, as it generates a similar proportion of 43.64% of the return. What is surprising

is its contribution to the overall downside risk of the portfolio: U.S. Equity generates 94% of

the total downside risk. Even more surprising, despite generating less than 50% of the total

endowment returns, Equity overall (U.S. and international) generates over 120% of the total

downside risk (U.S. Equity generates about 94% of the total downside risk and Non-U.S.

Equity generates about 33% of the total downside risk). It requires the diversifying effect of

other asset classes as well as tactical and active decisions to reduce risk to a total of 100%.

The next largest contributor to returns is the allocation to U.S. Fixed Income, which

generates on average 15.96% of the average endowment’s return. In contrast to the U.S.

Equity asset class, U.S. Fixed Income acts as a diversifier of downside risk, reducing the

overall risk of the portfolio by 15.11%.

The Hedge Funds asset class is the third largest contributor to overall portfolio returns,

generating 14.89%. Similar to U.S. Fixed Income, the presence of Hedge Funds in the asset

allocation serves to reduce portfolio risk. In this case Hedge Funds decrease total risk by

8.19%. This is in contrast with the commonly held belief that hedge funds are a high-risk

14Many university endowments are bound to preserve their capital by their charters. We thus find appro-
priate to use the level of payout plus inflation as a threshold for downside risk.
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asset class. In our data, an allocation to hedge funds diversifies away downside risk and has

a positive contribution to returns, being an asset class that helps endowments to meet their

payout obligations.

Another surprising finding comes from the Venture Capital asset class. On average, target

allocations to this asset class generate 5.87% of the total portfolio returns but contribute

7.49% to total downside risk. Such a small contribution to returns appears surprising given

the results of Lerner et al. (2007), who document that the venture capital portfolio of

university endowments has performed well when compared to venture capital portfolios of

other types of investors. If this is the case, then the natural question to ask is why university

endowments have not capitalized more on their ability to select venture capital investments.

To reconcile our results with those of Lerner et al. (2007), we observe that the 75th percentile

of the contribution of Venture Capital to total portfolio returns is high at 11.39%, indicative

of the fact that there are endowments in which Venture Capital makes a large contribution

to returns. However, the 75th percentile of risk contribution is also large at 13.68% (contrary

to the case of Hedge Funds where the 75th percentile of risk contributions is close to zero).

That is, Venture Capital is a significant generator of returns for certain endowments, as well

as a major generator of risk. While the raw returns of investments in Venture Capital may be

outstanding for a certain set of university endowment portfolios, our results do not support

a similar role in portfolio risk reduction.

Tactical decisions do not appear to contribute significantly to either return or overall

risk. One interesting result is that the tactical allocation to Venture Capital reduces returns

(however, it also decreases downside risk). As a possible explanation, we note that the

typical endowment fund is under-allocated to Venture Capital (as apparent from Table 4,

where the target Venture Capital weight is on average 2.32%, while the actual weight is

1.26% on average). Among the causes of this chronic under-allocation to Venture Capital we

cite slow deployment of committed capital, as well as the return of capital already allocated.

Unfortunately, data on actual capital commitments of endowment funds - as opposed to

target asset allocation - are not available, limiting our ability to investigate any of the

potential causes. The under-allocation to Venture Capital, however, exists and it is costly

to endowments in terms of returns, while its absence makes the portfolio less risky.
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One last result is that the active decisions made by endowments increase returns by

7.20% on average, while reducing the downside risk by 14.62%. The cause of this finding

lies in the fact that the sum of the returns generated by the internal benchmark selection

decisions and security selection is negatively correlated with the actual passive portfolios

held by endowments. This finding supports the literature such as Cremers and Petajisto

(2007) documenting that active investing creates value.

4.3.2 Sensitivity of risk contributions with respect to payout levels

In this section we seek to answer the following question: what are the risk contributions of

various asset classes and investment decisions to the overall risk of the average endowment

fund if payout obligations change? This question is relevant, especially since universities

require smooth payouts from their endowment fund. Typically, as the NACUBO studies

state, the payout made by an endowment fund is a fixed average of the value of an endowment

over a few years back. In particular, when the value of the endowment declines suddenly,

the payout ratio as a fraction of the current value of the endowment increases, while if the

endowment experiences a sudden positive return the same ratio decreases. It is therefore

natural to analyze risk contributions when the payout levels change. Additionally, we note

that analyzing the sensitivity of our results to payout levels may help us extend our results

to periods in which endowments experience negative performance. If we find that our results

hold true at payout levels that are higher than the current ones, this is equivalent with

the fact that our decomposition results hold true when returns are smaller while payouts

remained unchanged.15

In order to answer this question, we repeat the analysis performed in Subsection 4.3.1,

but instead of using MAR = inflation + payout for each endowment, we employ a set of

minimal acceptable returns, MAR = inflation + payout + x, where x lies in the interval

[−2%; 7%] and describes potential variations in the endowment average payout. By changing

x we develop an array of scenarios where payouts drop as low as 2.90% from their average

of 4.90% reported in Table 4 and increase as high as (an admittedly extreme) 11.90%. For

brevity, instead of analyzing separately the downside risk contributions of all twelve asset

15We thank one of the anonymous referees for this suggestion. The question of interest here is whether
our results on the risk contribution of various asset classes and/or investment decisions remain true during
periods of severe negative performance for endowments.
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classes, we group them together in Equity (domestic and non-U.S.), Fixed Income (domestic

and non-U.S.), Hedge Funds, Real Estate (Private and Public), Private Equity and Venture

Capital (PE/VC) and Cash. As the overall risk contributions of the asset classes “Other”

and “Natural Resources” are insignificant we do not present the results for these asset classes.

We then increase (or decrease) the payout reported by each endowment by x and repeat the

analysis of Subsection 4.3.1.

The risk contributions are presented in Figure 2. First, we observe that as we vary the

minimal acceptable return (MAR), the magnitude of the risk contributions vary widely.

For example, asset allocation to cash generates on average a negative risk contribution for

low MAR levels, that is, if the required level of payout is not high, cash serves as a risk

“diversifier” in the portfolio. However, as MAR increases, holding cash in the policy portfolio

makes it unlikely that the payout is met; intuitively, then, an allocation to cash increases

the risk of the portfolio. This is apparent in Figure 2: the downside risk contribution of the

allocation to cash increases to about 1% if MAR = inflation + payout + 7%. The same

results for Fixed Income: as MAR increases, the presence of the Fixed Income asset class in

the portfolio (with lower risk and lower returns) increases the risk that the MAR will not

be met.

As for hedge funds, we observe that this asset class remains a risk diversifier even as

we increase the MAR, noting that the diversification power decreases, however. The other

alternative assets, private equity and venture capital, see a decrease in their risk contributions

as MAR increases, although for the levels of MAR we analyze, these alternative assets

continue to have a positive risk contribution.

As a summary, when MAR increases, the positive risk contributions from asset allocation

shift from Equity and Private Equity/ Venture Capital to Fixed Income, Real Estate and

Cash. From a normative point of view, we view this result as an indication that as payouts

increase, allocations to Private Equity/ Venture Capital need to increase in order to meet

the payout obligations.

Panel C of Figure 2 illustrates how as MAR increases, the risk contribution of Active

Allocation or security selection changes. While, for the values of MAR currently observed in

the endowments universe, security selection serves as a return enhancer and risk diversifier,

we observe that as MAR increases, security selection, which currently decreases the total
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downside risk of the average endowment by about 14% (Panel A of Table 6) comes close to

having a zero risk contribution in the average endowment’s portfolio. Whereas endowments’

active investing skills contribute to reducing the downside risk from the current payout levels,

this may not be the case if payouts decrease. This may be due to the fact that managers are

limited in their ability to add value by active management and, in the case of high levels of

required payouts, those value adding skills are not sufficient. In particular, if endowments

experience significant drops in returns, their active investing abilities appear insufficient to

reduce the risks that payouts are not met.

Changes in Tactical Allocation contributions are presented in Panel B for completeness,

but their effect is negligible and we do not discuss them.

In conclusion, risk contributions are sensitive to the minimal accepted returns, and by

extension they are sensitive to the risk specification considered. Specifically, as the levels

of payouts change (or equivalently, when investors employ different downside risk statistics,

relative to different MARs), portfolio components may change their risk roles from becoming

risk contributors to becoming risk reducers, and vice-versa. These results show the impor-

tance of measuring the risk according the risk statistic that is relevant to the investor, and

how different the conclusions of this analysis are if a wrong risk statistic is applied.

5 Conclusions

In this study we have proposed a risk management system that decomposes the financial risk

associated with a portfolio simultaneously across the management decisions used to build

the portfolio as well as the individual securities held in the portfolio. This methodology of

risk measurement is particularly useful to decentralized (or “top-down”) investors, such as

university endowments or pension plans.

The fundamental risk measure used in this study is downside risk from a prespecified

minimal accepted return. This statistic is particularly useful for investors facing a liabil-

ity. University endowments, which typically have a payout obligation to their beneficiary,

represent such a particular type of investor.

We applied this newly developed risk measurement methodology to a sample of university

endowments and analyzed the sources of returns and downside risk. Consistent with the fact
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that endowments invest most of their assets in U.S. Equity we found this asset class to

generate most of the returns and most of the downside risk. In contrast, we found that U.S.

Fixed Income, while increasing returns, appears to also decrease downside risk.

Contrary to the common wisdom that alternative investments are risky investments, we

found that some of these alternatives, namely hedge funds, contribute positively to returns

while simultaneously decreasing downside risk. Thus hedge funds play a similar role to that

traditionally attributed to U.S. Fixed Income in a university endowment portfolio. We also

found that the active investment decisions made by endowments increase returns and reduce

downside risk.

Although the risk management method we propose is based on downside risk, we stress

that the choice of a primary risk statistic depends on each investor’s unique characteristics.

The risk decomposition we propose, in particular, can be generalized to risk statistics that

are of particular interest to the investor.
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Appendix: Downside Risk Decomposition Mathematics

In this section we prove the downside risk decomposition formula. Let the whole portfolio

be denoted by R = w1R
1 + ... + wNRN .

Let DR
(
(w1R

1 + ... + wNRN),MAR
)

be the Downside Risk from MAR of the portfolio

with weights w1, ..., wN in asset classes 1 to N . Consider the natural extension of DR to

N -uplets (w1, ..., wN) whose sum is not necessarily one. Because

DR
(
(λw1R

1 + ... + λwNRN), λMAR
)

= λDR
(
(w1R

1 + ... + wNRN),MAR
)
,

by differentiating with respect to λ then making λ = 1 we obtain the following downside

risk decomposition

DR
(
(w1R

1 + ... + wNRN),MAR
)

=
N∑

i=1

wi
∂DR

∂wi

+ MAR
∂DR

∂MAR
.

Recall that we denoted by I the subset of the probability space on which the returns of

the entire portfolio R < MAR, and by EI [X] = E[X1I ]. With this notation we have that:

DR =
√
EI

[
(MAR− (w1R1 + ... + wNRN))2].

Differentiating the above relationship with respect to MAR we obtain that:

∂DR

∂MAR
=
EI

[
MAR− (w1R

1 + ... + wNRN)
]

DR

=
EI

[
(w1 + ... + wN)MAR− w1R

1 − ... − wNRN
]

DR

=
EI [w1(MAR−R1) + ... + wN(MAR− wN)]

DR
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= w1
EI [MAR−R1]

DR
+ ... + wN

EI [MAR−RN ]

DR
.

Substituting the formula for ∂DR
∂MAR

into the decomposition of downside risk we obtain

that

DR
(
(w1R

1 + ... + wNRN),MAR
)

=
N∑

i=1

wi

(
∂DR

∂wi

+
MAR · EI [MAR−Ri]

DR

)
.

In order to see the interpretation of our downside risk decomposition formula, note that

by differentiating the definition of the downside risk with respect with wi we obtain that:

∂DR

∂wi

=
∂

∂wi

√
EI [MAR− (w1R1 + ... + wNRN)]

=
1

DR
EI

[−Ri(MAR−R)
]
.

Substituting this formula into equation (13) we obtain that:

wi

(
∂DR

∂wi

+
MAR · EI [MAR−Ri]

DR

)
=

1

DR
EI

[
(wiMAR− wiR

i) · (MAR−R)
]
.
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Tables and Figures

Table 1: Portfolio structure for the XYZ fund.

Asset Benchmark Actual
Class Benchmark Portfolio Portfolio

U.S. Equity Russell 3000 wP
1 = 50% w1 = 40%

Large Cap Manager S&P 500 w1,1 = 20%
Small Cap Manager Russell 2000 w1,2 = 20%

Inflation Hedge ML Infl. Linked wP
2 = 50% w2 = 60%

TIPS Manager ML Infl. Linked w2,1 = 40%
Commodities Manager GSCI w2,2 = 20%

Table 2: The distribution assumptions on the XYZ investment horizon.

Security Expected Standard
Type Annual Return Deviation

Policy
Benchmarks

R3000 US Equity 8.37% 12.30%
ML Infl. Linked Inflation Hedge 5.12% 6.60%

US Equity
Benchmarks

S&P 500 Large cap 8.28% 12.00%
R2000 Small cap 9.02% 18.00%

Inflation Hedge
Benchmarks

ML Infl. Linked TIPS 5.12% 6.60%
GSCI Commodities 5.00% 23.00%

Value added Large cap 0.83% 3.70%
Small cap 1.24% 8.50%

TIPS 0.22% 1.50%
Commodities 0.76% 4.40%



Decentralized Downside Risk Management 34

Table 3: Decomposition of XYZ portfolio returns and downside risk.
The Table presents the decomposition of the fictional fund XYZ returns and downside risk from a minimal accepted return

(MAR). We assume that MAR = 5%.

Panel A: Returns Decomposition

Return contributions

Asset Intermediate Asset Intermediate
Benchmarks Benchmarks Allocation Tactical Benchmarking Active TOTAL
U.S. Equity 4.19% -0.84% 3.88%

Large Cap -0.02% 0.17%
Small Cap 0.13% 0.25%

Inflation Hedge 2.56% 5.12% 7.90%
TIPS 0.00% 0.09%

Commodities -0.02% 0.15%

TOTAL 11.78% = 11.78%

Panel B: Downside Risk Decomposition

Downside Risk Contributions

Asset Intermediate Asset Intermediate
Bechmarks Benchmarks Allocation Tactical Benchmarking Active TOTAL
US Equity 2.6% -0.5% 2.9%

Large Cap -0.1% 0.1%
Small Cap 0.6% 0.2%

Inflation Hedge 0.9% 0.2% 2.9%
TIPS 0.0% 0.1%

Commodities 1.6% 0.1%

TOTAL 5.8% = 5.8%
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Table 4: Summary statistics of asset allocation and performance.
The Table presents summary statistics of 281 U.S. college and university endowments as of 2005. The returns are the annualized

returns calculated from the entire history of the fund.

Summary Statistics

Target Weights Actual Weights

Mean 25th prc Median 75th prc Mean 25th prc Median 75th prc

1 . U.S. Equity 43.31% 31.45% 44.50% 55.00% 42.38% 32.32% 42.06% 53.70%
2 . Non U.S. Equity 13.07% 10.00% 15.00% 16.00% 15.41% 11.58% 15.90% 19.70%
3 . U.S. Fixed Income 19.95% 15.00% 20.00% 25.00% 17.44% 12.54% 16.72% 21.53%
4 . Non U.S. Fixed Income 0.60% 0.00% 0.00% 0.00% 0.95% 0.00% 0.00% 0.00%
5 . Public Real Estate 1.50% 0.00% 0.00% 3.00% 1.46% 0.00% 0.00% 2.50%
6 . Private Real Estate 2.31% 0.00% 0.00% 4.81% 1.90% 0.00% 0.80% 2.80%
7 . Hedge Funds 11.23% 2.50% 10.00% 15.00% 12.25% 4.40% 10.41% 17.54%
8 . Venture Capital 2.32% 0.00% 0.00% 5.00% 1.26% 0.00% 0.20% 2.00%
9 . Private Equity 3.18% 0.00% 1.50% 5.00% 2.43% 0.00% 0.80% 3.70%

10 . Natural Resources 1.29% 0.00% 0.00% 2.00% 1.36% 0.00% 0.00% 1.94%
11 . Other Investments 0.49% 0.00% 0.00% 0.00% 0.72% 0.00% 0.00% 0.13%
12 . Cash 0.74% 0.00% 0.00% 0.00% 2.45% 0.10% 1.20% 3.60%

Total Returns Payouts

Mean 25th prc Median 75th prc Mean 25th prc Median 75th prc

9.82% 8.91% 9.83% 10.74% 4.90% 4.30% 4.85% 5.30%
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Table 5: Summary statistics for asset class benchmarks.
The Table presents summary statistics for indices used to proxy asset classes. SR is the Sharpe ratio.

Summary statistics

Asset class Benchmark index Mean Std Median SR

1. U.S. Equity Russell 3000 9.93 13.37 11.39 0.43

2. Non U.S. Equity MSCI World (Excl. US) 4.46 13.31 5.82 0.02

3. U.S. Fixed Income Barclays Capital Bond Aggregate 8.04 4.41 8.64 0.88

4. Non U.S. Fixed Income Salomon Brothers Non US Bond Index 7.89 9.08 7.60 0.41

5. Public Real Estate NAREIT 13.27 12.79 9.06 0.71

6. Private Real Estate NCREIF 7.81 6.55 8.07 0.56

7. Hedge Funds HFRI-all fund Composite 14.31 7.61 13.09 1.34

8. Venture Capital Cambridge Associate VC index 26.59 56.20 17.42 0.40

9. Private Equity Cambridge Associate PE index 14.76 13.74 15.38 0.77

10. Natural Resources AMEX Oil (before 1992), GSCI (after 1992) 7.02 16.87 1.33 0.17

11. Other Investments — — — — —

12. Cash 30-day U.S. T-Bill 4.14 1.92 4.73 —

Correlations
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

1. U.S. Equity 1.00
2. Non U.S. Equity 0.60 1.00
3. U.S. Fixed Income -0.03 -0.57 1.00
4. Non U.S. Fixed Income -0.10 -0.11 0.26 1.00
5. Public Real Estate -0.02 0.20 0.08 -0.17 1.00
6. Private Real Estate 0.20 0.17 -0.31 -0.57 0.02 1.00
7. Hedge Funds 0.55 0.56 -0.05 0.07 0.03 -0.46 1.00
8. Venture Capital 0.37 0.45 -0.31 -0.20 -0.30 0.21 0.53 1.00
9. Private Equity 0.79 0.80 -0.32 -0.22 0.14 0.36 0.56 0.56 1.00

10. Natural Resources 0.79 0.47 -0.42 -0.09 -0.12 0.28 0.18 0.49 0.28 1.00
11. Other Investments — — — — — — — — — — —
12. Cash 0.27 -0.21 0.32 -0.35 -0.40 -0.04 0.23 0.21 0.01 -0.09 — 1.00
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Table 6: Returns and Risk contributions in endowments’ portfolios.
The Table presents the returns and downside risk contributions of the asset allocation, tactical and active (defined as the

sum of internal benchmarking decisions RB and the security selection components RA) parts of an endowment portfolio. The

contributions are relative as follows. In order to calculate the returns contributions we perform the decomposition of returns

as in formulae (4) to (8), using a MAR = payout + inflation. The inflation component is the annual CPI. We then divide the

returns of each component of formulae (4) to (8) by the overall portfolio returns while summing RB and RA together. All the

contributions to the portfolio returns add up to 100%. We do the same thing to downside risk, with the distinction that formula

(12) is used together with formulae (4) to (8) to decompose the overall downside risk of the portfolio.
Continued on the next page . . .
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Table 6 (cont.): Returns and Risk contributions in endowments’ portfolios.

Panel A: Mean contributions

Return contribution DR contribution

Policy Tactical Active Policy Tactical Active

1 . U.S. Equity 43.64% -0.96% 94.03% -2.13%
2 . Non U.S. Equity 6.00% 1.12% 33.70% 5.27%
3 . U.S. Fixed Income 15.96% -2.00% -15.11% 1.93%
4 . Non U.S. Fixed Income 0.48% 0.25% -0.49% -0.31%
5 . Public Real Estate 2.17% -0.07% -2.64% 0.01%
6 . Private Real Estate 1.77% -0.27% -1.45% 0.20%
7 . Hedge Funds 14.89% 1.44% -8.19% -0.88%
8 . Venture Capital 5.87% -2.79% 7.49% -2.50%
9 . Private Equity 4.51% -1.11% 4.05% -0.68%

10 . Natural Resources 0.80% 0.06% 0.99% 0.00%
11 . Other Investments 0.00% 0.00% 0.38% 0.29%
12 . Cash 0.35% 0.69% 0.37% 0.30%

7.20% -14.62%

TOTAL 100 % 100 %

Panel B: The 25th percentile of contributions

Return contribution DR contribution

Policy Tactical Active Policy Tactical Active

1 . U.S. Equity 31.33% -4.35% 63.39% -9.12%
2 . Non U.S. Equity 4.40% 0.00% 18.13% 0.00%
3 . U.S. Fixed Income 10.95% -3.40% -19.32% -0.09%
4 . Non U.S. Fixed Income 0.00% 0.00% 0.00% 0.00%
5 . Public Real Estate 0.00% 0.00% -4.55% -0.22%
6 . Private Real Estate 0.00% -0.73% -2.37% -0.22%
7 . Hedge Funds 3.28% -1.00% -10.00% -0.90%
8 . Venture Capital 0.00% -5.17% 0.00% -4.61%
9 . Private Equity 0.00% -2.28% 0.00% -1.18%

10 . Natural Resources 0.00% 0.00% 0.00% 0.00%
11 . Other Investments 0.00% 0.00% 0.00% 0.00%
12 . Cash 0.00% 0.00% 0.00% 0.00%

-0.12% -35.99%

TOTAL 100 % 100 %

Panel C: The median of contributions

Return contribution DR contribution

Policy Tactical Active Policy Tactical Active

1 . U.S. Equity 42.03% -0.47% 83.35% -0.90%
2 . Non U.S. Equity 6.25% 0.69% 28.22% 3.12%
3 . U.S. Fixed Income 15.05% -1.25% -14.72% 1.05%
4 . Non U.S. Fixed Income 0.00% 0.00% 0.00% 0.00%
5 . Public Real Estate 0.00% 0.00% 0.00% 0.00%
6 . Private Real Estate 0.00% 0.00% 0.00% 0.00%
7 . Hedge Funds 13.88% 0.00% -4.22% 0.00%
8 . Venture Capital 0.00% 0.00% 0.00% 0.00%
9 . Private Equity 1.86% 0.00% 0.17% 0.00%

10 . Natural Resources 0.00% 0.00% 0.00% 0.00%
11 . Other Investments 0.00% 0.00% 0.00% 0.00%
12 . Cash 0.00% 0.36% 0.00% 0.03%

7.82% -6.61%

TOTAL 100 % 100 %

Panel D: The 75th percentile of contributions

Return contribution DR contribution

Policy Tactical Active Policy Tactical Active

1 . U.S. Equity 57.82% 2.43% 118.21% 4.31%
2 . Non U.S. Equity 7.92% 1.79% 42.55% 8.77%
3 . U.S. Fixed Income 20.24% 0.02% -9.49% 3.25%
4 . Non U.S. Fixed Income 0.00% 0.00% 0.00% 0.00%
5 . Public Real Estate 3.86% 0.13% 0.00% 0.00%
6 . Private Real Estate 3.44% 0.23% 0.00% 0.49%
7 . Hedge Funds 21.38% 2.86% 0.00% 0.42%
8 . Venture Capital 11.39% 0.00% 13.68% 0.00%
9 . Private Equity 7.76% 0.12% 5.79% 0.08%

10 . Natural Resources 1.22% 0.00% 0.00% 0.00%
11 . Other Investments 0.00% 0.00% 0.00% 0.00%
12 . Cash 0.00% 1.00% 0.00% 0.36%

17.00% 24.58%

TOTAL 100 % 100 %
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Figure 1: The typical investment management structure of an endowment.
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Figure 2: Sensitivity of risk contributions of asset classes and investment deci-
sions with respect to the minimal acceptable return (MAR).

For each value of x in the interval [−2%; 7%], we perform the downside risk decomposition of
each endowment in our sample using MAR = inflation + payout +x. We then calculate the
average downside risk contributions across the asset allocation, tactical and active investment
decisions and across the following condensed asset classes: Equity (domestic and non-U.S.),
Fixed Income (domestic and non-U.S.), Hedge Funds, Real Estate (Private and Public), Private
Equity and Venture Capital (PE/VC) and Cash. The values of x (in %) are plotted on the
x-axis, and the average risk contributions to total downside risk from MAR (in %) are plotted
on the y-axis. Panel A presents average downside risk contributions generated by the Asset
Allocation decision, Panel B presents average downside risk contributions generated by the
Tactical Asset Allocation decision and Panel C presents average downside risk contributions
coming from the Active (security selection) decision.
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Figure 2 (cont’d)

Panel B: Contributions from the Tactical Asset Allocation decision
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Figure 2 (cont’d)

Panel C: Contributions from the Active Allocation decision
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