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Abstract

In this paper we propose a model to forecast future mortality that
includes information on the limits to life and on progress in medi-
cine. We apply the model to forecasting future mortality and survival
rates for the males population in England andWales. Our proposal ex-
tends the benchmark stochastic mortality model along two dimensions.
First, we try and deal explicitly with tail risk in the cross-sectional
estimation. by including information about the "limit to life" in the
sample used to construct factors for the cross-sectional dimension of
mortality rates. Second, we propose to substitute the usual stochastic
trend model adopted for the time series of risk factors with a predic-
tive framework based on available evidence on medical progress and
causes of death. The model projects very little variability for limits to
life over the next ten years and predicts that in 2020 the probability
that an individual age 65 will survive until 85 is 20% with an upper
bound of 23% and a lower bound of 17%.
Keywords: stochastic mortality, limits to life, medical progress, longevity
risk, compression of morbidity, modal age of death
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Introduction

Forecasting mortality after 65 is both a challenging and a relevant problem.
The evolution of population dynamics at old ages in industrialized countries
in the second half of 20th century is a largely debated issue in demographics
and natural sciences with important financial implications. Insurance compa-
nies and pension plan providers face longevity risk, i.e. the risk that retirees
might on average live longer than expected. In many countries this risk was
traditionally born by private corporations or by the government. However,
regulators are pushing for a shift towards definite contribution plans; under
this new regime pensions will be paid more and more in the form of annu-
ities, provided by life insurance companies. Under the new regime longevity
risk matters, since annuities are based on contributions made by the insured
before retirement and are paid until the individual is alive.
The total longevity risk in a country can be decomposed in two elements.

The first one is a specific risk, which concerns single individuals and very
specific subgroups of the population (for example miners or employees of the
chemical sector). This idiosyncratic risk can be managed by holding a large
and well diversified pool of clients.
The second element is the aggregate risk, which is due to the uncertainty

around the general downward trend in mortality rates. This aspect is a
structural element, which cannot be hedged either with diversification or
financial strategies. Thus, insurance companies will not only be forced to
bear the risk of selling annuities to a population whose life expectancy is
increasing, but will also be forced by Solvency II to hold significant additional
capital reserves, since their risk cannot be hedged1.
Pricing of this aggregate longevity risk requires predicting mortality rates

and having a measure of the uncertainty of predictions, in fact, longevity risk
is increasing in the conditional volatility of mortality rates. In this paper
we propose a model to forecast future mortality that includes information on
the limits to life and on progress in medicine and we apply it to forecasting

1Longevity bonds have been recently proposed as a financial instrument capable of
providing an hedge against longevity risk. The idea for longevity bonds was firt published
in the Journal of Risk and Insurance in 2001.A longevity bond pays a coupon whose size
decreases along with the survival probability of individuals who have reached a certain
age. Longevity bonds have no principal repayment and coupons are "indexed" evolution
of survival probabilities of individuals who were born in the same year (so called "cohort").
For a discussion of these instruments, see Blake Boardman and Cairns (2010).
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future mortality and survival rates for the males population in England and
Wales. After the seminal contribution of Lee and Carter(1992), the standard
approach to forecasting mortality at old ages is based on dynamic factor
models for the time series of mortality rates at ages between 65 and 89.
Modeling mortality involves a cross-section and a time-series dimension.

The cross-sectional dimension is generated by the fact that data on observed
mortality at each age between 65 and 89. In other words, an age-structure
of mortality rates is observable at any given year. The time-series dimension
is generated by the fact that mortality rates at different ages are observed
over a sample of time series data that, in the case of the UK, is 1971-2009.
Stochastic mortality models typically capture the cross-sectional dimension
of the term structure of mortality via a small numbers of stochastic factors;
these stochastic factors are then projected ahead via simple time-series mod-
els to derive future survivor functions and mortality rates along with the
associated uncertainty. Figure 1 reports mortality rates, survivor probabili-
ties and frequencies of deaths in the UK and Wales for males aged from 65
onwards in 1971 and 20092.

Insert Figure 1 here

Several interesting facts emerge from Figure 1. First, mortality rates at
all ages have witnessed a sizeable reduction over the last 40 years. Second,
such a reduction is not uniform and mortality improvements at old ages have
been more drastic than the ones for individuals aged between 65 and 70. As
a consequence, survivor probabilities have also changed in an heterogenous
way: in 1971 an individual alive at age 65 would have a probability of 81% of
being alive at 69, a probability of 34% of being alive at 79, and a probability
of 5% of being alive at 89; such probabilities have shifted respectively to 92%,
64% and 20% in 2009. Third, we can observe the so called "rectangular-
ization"3 of frequencies of death: the modal age of death (the age with the

2We denote with q(x, t) the mortality for individuals of age x in year t, where mortality
is the probability that a person aged x and alive at the beginning of the year dies within
the end of the year. We then define s(x, t) as the survivor probability for individuals of
age x in year t, which is the probability that an individual will be alive at age x given
that he has survived up to age x − 1. Survivor probabilities are derived recursively: if
x = 65 then s(x, t) = 1− q(x, t), if x > 65 then s(x, t) = s(x−1, t)[1− q(x, t)]. Eventually,
frequencies of death for individuals of age x at time t are determined as first differnces of
survival probabilities: fod(x, t) = s(x, t)− s(x+ 1, t).

3This term was coined by James F. Fries; the phenomenon is also called "compression
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highest frequency of death) is shifting towards the right. In 1971 the modal
age of death was 74 years, while in 2009 it was 84 years. Fourth, the available
data do provid evidence on a question that is becoming increasingly more im-
portant with the lenghtening of life: "What happens after the age of 89?".
In this paper, we investigate the properties of an extended version of the
benchmark stochastic mortality model proposed by Cairns, Blake and Dowd
(2006). Our proposal extends the benchmark model along two dimensions.
First, we try and deal explicitly with tail risk in the cross-sectional estima-
tion. The benchmark model of the age-structure of mortality is fitted to the
observed mortality rates, which span the ages 65-89. The out-of-sample cross
sectional projections of these models deliver implausible mortality rates for
ages between 90 and 120. We try and correct for this problem by including
in the estimation sample information about the "limit to life" (age of the
oldest person alive in the population). In other words we complement the
information contained in mortality tables for individuals aged between 65
and 89 by adding for each year the information of the age at which the rate
of mortality reaches the value of one. this limit to life is mesured by the
age of the oldest living person in the world. Second, for what concerns the
time series dimension, we propose to substitute to the usual stochastic trend
model adopted for the risk factors a predictive framework based on available
evidence on medical progress. In practice, use data on causes of mortality
for males in England and Wales to predict factors over time; these data are
made available by the Institute of English Actuaries. The Institute provides
a time series of the average age standardized mortality rate for people be-
tween 60 and 89. This rate is then disaggregated into the main causes of
death, namely hearth and circulatory diseases, lung cancers, other cancers
and all other causes. We provide evidence on the statistical significance of
this information in explaining the observed trends in the time series of the
factors explaining mortality and we build this information in the forecast-
ing models. Our framework can be used to evaluate the potential impact
of breakthroughs in different fields of medicine on the projections for future

of morbidity". Morbidity consists in the quiet path towards death followed traditionally
by old people. In other words, many people survived to an age higher than the model
age of death, and the profile of frequencies of death above the mode was pretty smooth.
However, the increase in the modal age of death has made the profile of frequencies of
death for ages above the mode close to a straight vertical line. That’s why morbidity has
been "compressed". See Vladimir Canudas Romo (2008), Jean Marie Robine (2008) and
Nadine Ouellette (2009 and 2011).

4



mortality rates and longevity risk.
We propose and discuss our model in Section 2, where we also compare

it with the benchmark specification. In Section 3 and 4 we present the
out-of-sample performance, finally we devote a section to compare model
derived mortality improvements based on different assumptions for the future
evolution of causes of mortality.

1 A stochastic model with causes of mortality
and limits to life

Stochastic mortality models deal simultaneously with the cross-sectional and
the time-series dimension of mortality data: a factor model is fitted to the
cross-sectional data to capture with a limited number of factors the entire
cross-sectional variation of mortality in any given period; then a time-series
model is specified for the factors to obtain projections and to reconstruct
the entire mortality curve in any future period. Stochastic simulation of
the model allows to explicitly recognize the role of uncertainty and to asso-
ciate confidence intervals to predicted mortality and survivor functions. We
propose the following stochastic model for mortality at ages over 654:

q(x, t) =
ec1t+c2t(x−x̄)+c3t(x−x̄)

2+c4t(x−x̄)3

1 + ec1t+c2t(x−x̄)+c3t(x−x̄)2+c4t(x−x̄)3
+ ux,t

c1,t+1 = β1 + β2c1,t + β3 log m̄t+1 + v1,t+1
c2,t+1 = β4 + β5c2,t + v2,t+1
c3,t+1 = β6 + β7c3,t + v3,t+1
c4,t+1 = β8 + β9c4,t + v4,t+1⎡⎢⎢⎣
v1,t+1
v2,t+1
v3,t+1
v4,t+1

⎤⎥⎥⎦ v N

⎛⎜⎜⎝
0
0
0
0

,
X⎞⎟⎟⎠

m̄t+1 = mh
t+1 +mcd

t+1 +mlc
t+1 +moc

t+1 +moth
t+1

4This choice is common to studies focusing on longevity. Bear in mind that longevity
risk concerns only people in the oldest segments of the population. Thus, it makes sense
to focus on the fit of the model to the last part of the term structure, rather than on the
one to the whole curve.
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Where q(x, t) is the mortality at age x in year t, defined as the probability
that a person aged x and alive at the beginning of the year dies within the
end of the year. The cross-sectional variation of mortality is captured by four
factors: ci,t+1, i ∈ {1, 2, 3, 4} .The first factor is not age specific, while the
other three factors capture the cross-sectional evolution of mortality rates
at different ages. We relate improvement in mortality rates at all ages to
log m̄t+1, where m̄t+1is the average age standardized mortality rate for people
between 60 and 89.
This mortality rate is generated via the aggregation of the main causes of

death. Namely hearth,mh
t+1, and circulatory diseases,m

cd
t+1 lung cancers,m

lc
t+1

other cancers, moc
t+1, and all other causes,m

oth
t+1. This model extends the

Cairn, Blake and Dowd (2006) (CBD) model. CBD is obtained from our
specification by setting c3,t+1 = 0, c4,t+1 = 0, and β3 = 0 and β2 = β5 = 1.
We take from CBD the logit specification of mortality because it has the

intuitive property of constraining mortality, which is effectively a conditional
probability, to lie between zero and one.
We introduce the higher order factors c3,t+1 and c4,t+1 to obtain a better

measure of mortality at old ages, as we fit our specification to the mortlaity
rates between 65 and 89 augmented with the information on limits to life.
The point is illustrated in Figure 2. Figure 2 reports the mortality function
in year 2000 for the age range 65-120; projections based on the CBD model
are plotted along with those generated by our extended model, the observed
mortality rates for the age range 65-89 and the limit to life in year 2000 which
sets a mortality rate at a value of 1 for the age 113, as 113 was the age of
the oldest living person on earth in year 2000 .

Insert Figure 2 here

The CBD model fits very well the observable data but it generates im-
plausible mortality for the age between 90 and 120 years. In fact, mortality
grows too slowly with age (note, for example, that mortality at 100 years
is only 50%). In other words, the model seems to overestimate the survival
probability for very old individuals and therefore overstates tail risk.
In order to address the issue of underestimation of mortality at age over 89

in the CBD model we have augmented the dataset on mortality by collecting
evidence on the oldest living person in the world over the period 1971-20095.

5For further reference see the website of the Gerontology Research Group, www.grg.org,
and the following link http://en.wikipedia.org/wiki/Oldest_people# Chronologi-
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This evidence, reported in Figure 3, shows that the age of the oldest living
person in the world over the relevant sample period increases, but it does not
change dramatically over time.

Insert Figure 3 here

We have incorporated this information in our dataset by setting the mor-
tality rate equal to 1 in correspondence of the age of the eldest person in the
world population. We have then re-estimated the logit model by including
this extreme observations on the "limit to life". Our logit model for mortal-
ity rates is not any longer linear; a quadratic and a cubic trend in age are
necessary to make the fit on the extended cross-section comparable to the
one of the original model on the age span from 65 and 89. The quadratic
and the cubic trend in age are in practice captured by the factors c3,t+1 and
c4,t+1.
Note how the shape of the age-structure of mortality over 90 changes

dramatically. The quadratic component determines a quick increase in mor-
tality rates for people above 89 years old; the cubic component act as a linking
spline between the linear in-sample model and the quadratic out-of-sample
component. In year 2000 the oldest person in the population was 113; at
this age the mortality rate reaches one in our model, while the original CBD
specification is far from capable of replicating this structure. On the other
hand, the performances of the two models for the age range 65-89 are very
similar.
The second important sources of difference between our model and the

traditional factor models of mortality lies in the specification of the time-
series models for the factors. In fact, CBD adopts a unit root specifica-
tion for all factors, and projects future values on the basis of the drift and
conditional volatility estimated on past data. This procedure ensures that
the uncertainty associated to the future evolution of factors is not under-
estimated, since the variance of projections diverges to infinite for all factors
as the predictive horizon grows to infinity. However, this simple time series
model appears to be based on a very restrictive set of assumptions, that for
instance do not allow to link the stochastic process of the factors to exoge-
nous evidence on medical progress and causes of death. In our specification
the only factor that has a trend is c1,t+1. We relate this trend to medical
progress by making it a function of the average standardized mortality rates

cal_list_of_the_verified_oldest_living_man_since_1961
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at ages between 65 and 90, which aggregates mortality rates for different
causes. Figure 4 motivates intuitively the relation between c1t and m̄t in our
specification.

Insert Figure 4 here

The Figure reports the time-series of the estimated first factor in the
CBD model, c1t, and logarithm of the average age-weighted mortality rate,
m̄t. There is a close match between the behavior of the two series, which
relates the downward trend in c1t to the general improvements in mortality
over time at all ages.
Since we build explicitly the relationship between c1t and m̄t into our

stochastic model, we are able to evaluate the impact on future mortal-
ity projections of different scenario for progress in medicine. In fact, m̄t

is obtained by summing the average mortality rates for different causes:
mh

t+1,m
cd
t+1,m

lc
t+1,m

oc
t+1,m

oth
t+1. Possible breakthroughs in different fields of

medicine can be incorporated into the model by providing future patterns
for these (exogenous) variables. Figure 5 illustrates this point by showing
that the fall in average mortality due to vascular diseases has dominated the
aggregate trend, causing a general decline in the average age weighted mor-
tality rate; starting from the seventies, the average mortality rate for hearth
and circulatory diseases has declined, while the mortality rate for cancers has
remained stable over time.

Insert Figure 5 here

Quentions on the effect on future mortality of a medical breakthrough
that drives to zero the average death rate for lung cancer can be promptly
simulated within our specification, It would be impossible to "parameterize"
the same question in a model with stochastic trends for the factors determin-
ing mortality at different ages. For what concerns the other factors, we do
not impose a priori a stochastic trend in the age related factors (in fact we
do not impose the CBD coefficient restrictions β2 = β5 = 1). After having
related the trend c1t to m̄t, we let the data speak freely about the time series
behavior of the other factors.

1.1 Placing our Model in the Literature

Our model falls in the field of stochastic mortality frameworks. Stochastic
mortality approaches traditionally focus on the term structure of mortality
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rates and have been mainly developed in order to answer the need of life
insurers and of the financial sector for a reliable probabilistic structure to
deal with population dynamics and their uncertainty. The two most popular
frameworks introduced so far are the one by Lee and Carter (1992) and the
one by Cairns Blake and Dowd (2006). One of the main practical implemen-
tation of this research has been the estimation and projection of longevity
risk in England and Wales (but also in the United States). While in the Lee
and Carter model the dynamics of mortality are captured just by one single
factor, the CBD model uses two different stochastic factors, one for the in-
tercept and one for the slope of the logit equation for mortality rates. Both
models have been extended to take into account cohort effects (Renshaw and
Haberman, 2006). In general, CBD shows a better fit to the data (see Cairns
Blake and Dowd et Al. 2008).
In this paper we propose an extension to the original CBD framework

along two dimensions: modelling mortality rates in the neighbourhood of the
"limit to life" and using information on the different causes of mortality in the
time series domain of the factors. The main objective of our specification is
to establish a closer link between the statistical framework and the available
demographics data (and their projections). Moreover, we use data on causes
of mortality to explain the general improvement of population longevity and
to run scenarios for future trends. The model is fitted on mortality rates, but
its feature allows us to obtain model consistent projections for the maximum
age of death and for frequencies of death. This makes our work closer to the
debate on maximum life expectations (see Vallin and Meslé 2010), and to the
one on the progressive increase of the modal age of death in low mortality
countries (Robine Michel and Institut 2008, Canudas Romo 2008, Oullette
2011). In fact, our model can be useful also to simulate alternative scenarios
for the "compression of morbidity" in the next decades.
Stochastic mortality models are not the only approach used to project

future mortality in the UK. An alternative framework is provided by the
Institute of English Actuaries and is called Constant Mortality Investigation
(CMI). The CMI model is considered the benchmark for the projection of
mortality rates in England and Wales. The model is based on scenarios for
future Mortality Improvement Rates, which are defined as the rates of change
of mortality rates. The future trajectory of improvement rates is obtained
via a spline method that takes into account both cohort and age specific
effects. The projections are based on the definition of current mortality
improvement rates and of asymptotic long-term improvement rate. Once the
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initial and the long-term improvement rate for a specific cohort are chosen,
the future evolution of improvements is assumed to converge smoothly to the
long-term rate with a half-life of 10 years (see CMI Working Papers 38, 39
and 49). The framework is not probabilistic and no uncertainty is associated
to future trajectories. Different assumptions on the Long-term improvement
rate deliver different patterns of future improvements and therefore different
shapes of the term structure of mortality rates. The Institute of English
Actuaries is now suggesting 1.25% ("one and a quarter") as a "base case
scenario" for the Long-term improvement rate. An alternative "worst case"
scenario is an improvement rate of 3.25% ("three and a quarter"). CMI is the
provider of the data on average age standardized mortality rates per cause of
death that we use in the estimation of our model. In addition, CMI releases
projections for the future evolution of causes of death consistent with its
scenarios. Our framework allows to feed such scenarios in a factor model and
derived model based prediction with the associated uncertainty based on the
CMI projections for the exogenous variables.

2 Estimation and Out-of-Sample Predictive
Performance

Our empirical application is on England and Wales mortality rates over the
sample 1971-2009 as available from Lifemetrics6. The data of the time series
of average mortality rates for different causes are taken from CMI7. The data
on the age of the eldest person in the world population has been reconstructed
by using information available from the ebsite of the Gerontology Research
Group and wikipedia8.
The model delivers a good fit to the cross-section of mortality rates at

any year in the historical sample. To provide evidence on this issue we report
in Figure 6.1 the estimated factors along with their 95 per cent confidence
intervals and in Figure 6.2 the cross-sectional R2 for all years.

Insert Figures 6.1-6.2 here
6(http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics/data)
7(http://www.actuaries.org.uk/research-and-resources/pages/continuous-

mortality-investigation-data)
8http://www.grg.org, and http://en.wikipedia.org/wiki/Oldest_people#Chronological_list_of_th

living_man_since_1961
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Interestingly, the only factor that features a clear non-mean reverting
behavior is c1t.We report in Table 1 results from the estimation of the time-
series models for the factors.

Insert Table 1 here

All coefficients are significantly different from zero, in particular the coef-
ficient on the average age standardized mortality rate is positive, very signif-
icant and estimated with high precision. R-squares are high for all equations
and residuals do not show any mis-specification symptoms (see Figure 7).
Based on our estimation results, we conduct two different projection ex-

ercises. First, we conduct pseudo out -of-sample analysis by estimating the
model with data up to 2005 and then projecting the relevant variables up to
2009 to assess model predictions against realized data. Second, we generate
true out of sample predictions for 2020.
Out-sample predictions require to generate a scenario for the exogenous

variables mh
t+1,m

cd
t+1,m

lc
t+1,m

oc
t+1,m

oth
t+1. We have proceeded as follows:

logHCt+1 = γ1 + logHCt + u1,t+1
logOCt+1 = γ2 + logOCt + u2,t+1
logLCt+1 = γ3 + logLCt + u3,t+1
logOthert+1 = γ4 + logOthert + u4,t+1
log m̄t+1 = log [HCt+1 +OCt+1 + LCt+1 +Othert+1]

Projections are then obtained by setting γ1 = −0.02, γ2 = γ3 = γ4 = 0.
We report the results from pseudo out-of sample simulations and for out-of
sample predictions respectively on the left and the right column of Figure 8.
In the simulation exercise we expliciitly allow for parameters uncertainty so
there each replication is based on a draw from the ditribution of the residuals
of the models and the distribution of the estimated parameters.

Insert Figure 8 here

The empirical evidence shows that the model does well in pseudo-out of
sample simulation especially at modelling mortality for age over 80.
The first column of figure 9 reports the results for true out-of-sample

projections by showing mortality rates, the survivor function and predicted
frequencies of death for age 65 and over in 2020, with the associated 95
per cent confidence interval. The model predicts further improvements in
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mortality rates and a survivor function shifted above that observed in 2009
for ages for above 80 years, interestingly, the degree of uncertainty is rather
limited. The projected probability that in 2020 an individual aged 65 will
survive until 85 is 20% with an upper bound of 23% and a lower bound of
17%. The evidence from the simulation of Frequencies of death is consistent
with a further progressive "compression of morbidity" of mortality in the
next decade.
Note that our framework allows us to project the functions at all ages

above 65. In particular, we report in Figure 3, the model based projections
for the age of the oldest individual in the population, that shows very little
variability moving from the current value of 114 years to a projected value
of 116 years in 2020.

3 Compression of Morbidity: Scenario Analy-
sis

In this section we exploit the dependence of the dynamic of our factors on
exogenous variables to evaluate how different scenarios on the improvement
rates of mortality impact on the evidence of compression of morbidity de-
scribed in the previous section.
In particular we considere the model based projections derived in the

previous section as a baseline scenario and we evaluate them against two
alternative scenarions. the first alternative scenario is based on the pro-
jections of the Institute of English Actuaries for the long-term improvement
rates of mortality. The Institute of English Actuaries cosndier a rate of 1.25%
("one and a quarter") as a "base case scenario" for the Long-term improve-
ment rate and an alternative "worst case" scenario of an improvement rate
of 3.25% ("three and a quarter"). We consider for our first alternative sce-
nario projections consistent with the hypothesis that the long term mortality
improvement rate for the population is 3.25%. We then generate a second
alternative scenario by changing the projections for the pattern of mortality
for lung cancer, considering an hypothetical situation in which it is projected
to reduce progressively to reach zero in 2016.

We use these scenarios for the exogenous variables determining c1t and
feed it into our model to stochasticallly simulate mortality rates from 2001

12



onwards for old ages. We compare in figure 9 projections based on the base-
line and on the two alternative scenarios.

Insert Figure 9 here

The results show that the CMI scenario for the total average mortality
rates produces lower estimates of mortality at old ages than those based on
our baseline scenario and predicts a much stronger "compression of mor-
bidity" of mortality in the next decade. This point is further illustrated in
Figure 10 where we report the frequencies of death observed in 2009 along
with all the different projections for the frequencies of death in 2020 based
on three different scenarios

Insert Figure 10 here

The compression of morbidity delivered by the CMI projections is even
stronger than the one projected by the model under the maintained hypoth-
esis that death for lung cancer will disappear by 2016.

4 Conclusions

This paper has proposed a structural framework for the cross-section and the
time series of mortality rates, survival probabilities and frequencies of death
for a given population. We extend the stochastic mortality model originally
proposed by CBD to include information on the limits to life and on the
impact of medical progress on the average mortality rate aggregated by causes
of death. In this exercise, we have fitted our model to the male population of
England and Wales for ages above 65 years old and we projected mortality
rates and limits to life up to 2020 by stochastic simulation. Our projections
generate very little change in the "limit to life" (age of the oldest person in
the population) over the next decade but sizeable shifts in mortality rates
and survivor function for ages between 65 and 89 and a further compression
of morbidity of mortality. The modal age of death (the age with the highest
frequency of death) is predicted to shift from 84 years in 2009 to 90 years in
2020.
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Table 1: Estimation results, sample 1972-2005
Coeffs StdErrs Tstats p− values

β̂1 0.155594 0.048967 3.177526 0.0019

β̂2 0.743237 0.095425 7.788667 0.0000

β̂3 0.394905 0.124283 3.177476 0.0019

β̂4 0.032356 0.007787 4.154964 0.0001

β̂5 0.808094 0.046544 17.36199 0.0000

β̂6 −0.000944 0.000268 −3.521158 0.0006

β̂7 0.828572 0.046689 17.874662 0.0000

β̂8 2.95E − 05 9.20E − 06 3.210272 0.0017

β̂9 0.778372 0.068254 11.40400 0.0000

R2 R2adj DW

eq1 0.9821 0.9810 2.4572
eq2 0.6321 0.6206 2.2956
eq3 0.7449 0.7370 2.1185
eq4 0.7108 0.7018 1.7107

c1,t+1 = β1 + β2c1,t + β3 log m̄t+1 + v1,t+1
c2,t+1 = β4 + β5c2,t + v2,t+1
c3,t+1 = β6 + β7c3,t + v3,t+1
c4,t+1 = β8 + β9c4,t + v4,t+1⎡⎢⎢⎣
v1,t+1
v2,t+1
v3,t+1
v4,t+1

⎤⎥⎥⎦ v N

⎛⎜⎜⎝
0
0
0
0

,
X⎞⎟⎟⎠

m̄t+1 = mh
t+1 +mcd

t+1 +mlc
t+1 +moc

t+1 +moth
t+1
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Figure 1: Observed mortality rates, survival probabilities and frequencies of
death for people aged from 65 to 89.
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Figure 2: Comparions of the cross-sectional fit of the model vs original CBD for year 2000.
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Figure 3: Observed maximum age at death (sample 1971-2009) and
out-of-sample projections generated by the model (sample 2006-2020)
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Figure 4: Average age standardized mortality for people aged from 65 to 89
vs coefficient c1 (sample 1971-2005).
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Figure 5: Time series of average age standardized mortality per cause for
people aged from 65 to 89 (sample 1971-2005).
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Figure 6: Time series of estimated model coeffcients and cross sectional
R-squares (sample 1971-2009)
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Figure 7: Time series of residuals from from the 4 equations in the model
(sample 1971-2005).
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Figure 8: Pseudo out-of-sample predictions for 2009 vs realized values (left
column); out-of sample forecast for 2020 (right column)
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Figure 9: Out-of-sample predictions for 2020 vs realized values in 2009; on
the left CMI projections for causes of mortality, on the right the our own

hypothesis.
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Figure 10: Scenarios for compression of morbidity
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