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Key q-duration: A Framework

for Hedging Longevity Risk

Johnny Siu-Hang Li,∗ and Ancheng Luo

Abstract

When hedging longevity risk with standardized contracts, the hedger needs
to calibrate the hedge carefully so that it can effectively reduce the risk. In this
article, we present a calibration method that is based on matching mortality
rate sensitivities. Specifically, we introduce a measure called key q-duration,
which allows us to estimate the price sensitivity of a life-contingent liability to
each portion of the underlying mortality curve. Given this measure, one can
easily construct a longevity hedge with a handful of mortality forwards. Our
empirical results indicate that using key q-durations, a hedge effectiveness of
more than 97% can be attained with only five mortaltiy forwards. We also
investigate other important issues that are related to standardized longevity
hedges, including the adaptation needed for hedging multiple birth cohorts,
and the quantification of sampling risk and basis risk.

Keywords: Cairns-Blake-Dowd model; Mortality forwards; Securitization.

1 Introduction

Pension plans and insurers selling life annuities are subject to longevity risk, the risk

that individuals are living longer than expected. Although the risk may not pose as

severe a short-term threat as large falls in asset values, it may possibly undermine

the long-term sustainability of a portfolio, and thus requires careful management.

∗Corresponding author. Department of Statistics and Actuarial Science, University of Waterloo,
Waterloo, Ontario, Canada. Email: shli@uwaterloo.ca.
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In recent years, longevity risk has become a high profile risk, partly because of the

current low yield environment, and partly because of changes in regulatory regimes.

For instance, Solvency II, which is scheduled to come into effect in 2013, requires

insurers operating in the European Union to hold longevity risk solvency capital that

is based on either a prescribed stress test or an approved internal risk model.

Longevity risk is systematic, so there is a limit to how much longevity risk an entity

can take, given its capital base and risk objectives. Pension plans and annuity writers

may transfer their longevity risk exposure to capital markets. For example, a pension

plan can take a long position of a contract which pays an amount that increases

with its realized survival rate to offset the unexpected increase in its liability. Some

investors including hedge funds are interested in acquiring an exposure to longevity

risk for earning a risk premium, because the risk has no obvious correlation with

typical market risk factors such as stock prices, interest rates and foreign exchange

rates.

Mortality-linked contracts typically take either an indemnity (bespoke) or stan-

dardized form. Indemnity style contracts are based on the actual mortality experi-

ence of the hedger’s own portfolio. An example is the survivor swap agreed between

Babcock International and Credit Suisse in 2009. Under the terms of the contract,

Babcock’s pension plan will swap pre-agreed monthly payments to Credit Suisse in

return for monthly payments dependent on the longevity of the plan’s own mem-

bers. Indemnity style contracts fully mitigate the hedger’s longevity risk exposure,

but they have limited liquidity. The counterparties may find it difficult to unwind

the deal after it had been done.

Standardized contracts, by contrast, are based on the mortality calculated by

reference to a national population index. An example is the 25-year longevity bond

jointly announced by BNP Paribas and the European Investment Bank in 2004. This

bond makes coupon payments that are proportional to the realized survival rates of

English and Welsh males who were aged 65 in 2002. Standardized contracts have lower

initial and ongoing data requirements. Also, because they are more transparent to

investors, they provide quicker execution and, in theory, greater liquidity. However,

in relying on standardized contracts, the hedger needs to calibrate the longevity

hedge carefully. Specifically, given a certain mortality-linked instrument available in

the market, the hedger needs to decide how many units of the instrument it should

acquire so that the maximum hedge effectiveness can be attained.
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Recently, there has been a wave of work on the pricing of standardized mortality-

linked instruments. For example, Cairns et al. (2006) priced longevity bonds with a

risk-adjusted mortality process; Li et al. (2011) valued mortality forwards by using

a method called canonical valuation; Zhou and Li (2010) discussed various issues

related to the pricing of longevity index swaps. However, relatively little research has

been devoted to the calibration of longevity hedges.

In a continuous-time setting, Dahl et al. (2008) derived risk-minimizing strategies

in markets where survivor swaps are available. Barbarin (2008) performed a similar

derivation by considering longevity bonds instead. The results in both studies are

built upon some assumed stochastic processes for the evolution of mortality, interest

rates and net payments to individuals in the portfolio. For example, in the work of

Dahl et al. (2008), it was assumed that the underlying mortality process is driven

by a Cox-Ingersoll-Ross (CIR) model and that the net payments to all individuals in

the portfolio are identical. These assumptions may be too stringent to fit the actual

situation that a hedger is facing.

In this paper, we approach the hedging problem from a different angle by consid-

ering a portfolio’s price sensitivity to the assumed mortality curve. This idea is first

proposed as a concept by Coughlan et al. (2007) and then described in more detail

by Coughlan (2009). However, in previous work, the measurement of mortality rate

sensitivity has not been studied extensively, and in particular, it is unclear about im-

portant properties such as age dependence (see, e.g, Wills and Sherris (2008)) can be

incorporated into the sensitivity measures. In this paper, we formalize the setup, and

perform a deeper investigation of various issues that are related to the measurement

of mortality rate sensitivity.

What we propose in this paper is largely analogous to Ho’s (1992) method of key

rate durations, which has been extensively used by traders to measure and manage in-

terest rate risk. Key rate durations measure a portfolio’s price sensitivity to different

segments of an interest rate yield curve, and an interest rate hedge can be constructed

using zero-coupon bonds with maturities equal to the key rate durations of the port-

folio being hedged. We propose an analogous measure called key q-duration, which

allows us to measure the sensitivity of a life-contingent liability to each portion of a

mortality curve. With key q-durations, one can create a longevity hedge with mortal-

ity forwards, which have been available in the market since they were first launched

by JP Morgan in 2007.
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We name it key q-duration because, as we demonstrate empirically, the evolution

of mortality is driven primarily by a few key mortality rates. This property enables us

to create a longevity hedge with a small number of mortality forwards. By requiring

fewer contracts, the method we propose can help the longevity market concentrate

liquidity on a restricted number of instruments.

We emphasize that the validity of the hedge created by key q-durations does

not depend on a specific stochastic mortality model.1 Since no model (and hence

simulation) is involved, the calibration of the hedge is quick and manageable even

for a complicated real life pension plan. The ease of implementation requires little

sacrifice of hedge effectiveness. Our illustrations indicate that a hedge created by key

q-durations is almost equally effective as the corresponding hedge that is optimized

by a computationally intensive method.

There are several problems that make longevity risk more difficult to hedge than

interest rate risk. Because a typical pension plan contains members who were born

in different years, when we construct a longevity hedge, a group of mortality curves

have to be considered simultaneously. This means that, in practice, what we need

to hedge is the uncertainty arising from the evolution of a two-dimensional surface,

rather than just a one-dimensional curve. To overcome this challenge, we generalize

key q-durations to a two-dimensional set-up, permitting us to hedge longevity risk

associated with multiple birth cohorts using only a handful of mortality forward

contracts.

Basis risk and sampling risk are two extra challenges to the hedging work. Basis

risk arises from the differences between the mortality experience of the hedger’s port-

folio and the national population to which the standardized instrument is linked. It

affects not only hedge effectiveness but also the calculation of key q-durations. Sam-

pling risk, on the other hand, results from the random variations between the lifetimes

of individuals in the same portfolio. Although sampling risk is diversifiable, it may

still be significant for smaller pension plans. The issues of basis risk and sampling

risk are acknowledged and are analyzed in this paper.

The remainder of this paper is organized as follows. In Section 2, we describe the

1In the absence of basis risk, the calculation of key q-durations does not require a mortality
model. However, when basis risk is present, a model may be needed to estimate an adjustment
factor for the difference between the mortality of the two populations involved. Further details are
provided in Section 7.2.
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sources of data. In Section 3, we define key q-durations. In Section 4, we explain

how a longevity hedge can be constructed with key q-durations. In Section 5, we use

a synthetic pension plan to illustrate the use of key q-durations. The performance

of the hedge we construct is analyzed from both ex post and ex ante perspectives.

In Section 6, we extend key q-durations to a two-dimensional set-up, which can be

applied to portfolios involving multiple birth cohorts. In Section 7, we discuss the

additional challenges, including basis risk and sampling risk. Finally, in Section 8, we

conclude the paper with some suggestions for further research.

2 Sources of Data

Most of our illustrations are based on the LifeMetrics index, on which JP Morgan’s

q-forwards are written. In particular, we use the historic index data for the popula-

tion of English and Welsh males. The index data are composed of graduated death

probabilities at ages 20 to 90 for the years 1961 to 2009. They are are obtained from

the LifeMetrics website (www.jpmorgan.com/lifemetrics).

We illustrate the impact of population basis risk with several populations, includ-

ing Canadian males, French males, UK males and Scottish males. The required data

for these populations are obtained from the Human Mortality Database (2011).

3 Key q-duration

3.1 Key mortality rates

The evolution of a mortality curve is not simple. In Figure 1 we illustrate the shifts

of the mortality curve for English and Welsh males over different periods of time. It

is clear from the illustration that, just like interest rate yield curves, the mortality

curve is subject to non-parallel shifts over time. For this reason, when we measure

a portfolio’s price sensitivity to the underlying mortality curve, we need to use a

vector of numbers rather than just a single number, which by itself is not able to take

account of movements other than parallel shifts.

More specifically, we measure a portfolio’s price sensitivity to shifts at selected

key points on the mortality curves. We let n be the number of key points and let
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Figure 1: The shifts of the mortality curve for English and Welsh males over different

periods of time.

ages x1, x2, . . . , xn (from smallest to largest) be the key points on a mortality curve.

The mortality rates at ages x1, x2, . . . , xn are called the key mortality rates.

Is it necessary to treat every single point on a mortality curve as a key rate? To

answer this question, let us perform a factor analysis of the historic death probabilities

for English and Welsh males. In this analysis, we divide the entire age range, 20 to

90, into j consecutive age groups, Xi, i = 1, . . . , j, of (approximately) equal size. For

each j = 1, 2, . . ., the following model is then fitted to the data:

ln(q(x, t)) = αx +

j∑
i=1

κ
(i)
t I(x ∈ Xi) + ε(x, t),

where q(x, t) is the probability that an individual aged x at the beginning of year t
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dies during year t, given that the individual has survived to age x; αx is the average

of ln(q(x, t)) over the sample period (1961 to 2009); κ
(i)
t is a time-varying stochastic

factor for the ith age group; I is an indicator function; and ε(x, t) is the error term.

We can easily fit the model by the method of least squares.

Following Li and Lee (2005), we measure the goodness-of-fit for each fitted model

with an explanation ratio, ER, which can be expressed as

ER = 1−
∑

x,t ε(x, t)
2∑

x,t(ln(q(x, t))− αx)2
.

We can interpret ER as the proportion of variance in historic q(x, t) explained. A

higher value of ER thus indicates a better fit to data, and ER = 1 indicates a perfect

fit.

The values of ER for j = 1, 2, . . . are shown graphically in Figure 2. We observe

from the diagram that over 98% of the variability in historical mortality rates can

be explained with only five factors, and that the benefit from introducing additional

factors is very marginal. This factor analysis suggests that we may not need a large

number of key mortality rates for an adequate representation. In particular, we may

reasonably represent the evoluation of a mortality curve with say five key mortality

rates, each of which corresponds to a boarder age group. This property can simplify

the measurement of sensitivity, and more importantly, it can reduce the number of

instruments needed for a meaningful longevity hedge.

3.2 Modeling key rate shifts

The next step is to model the impact of a shift in a key mortality rate on other

rates on the mortality curve. This step is necessary because of the property of age

dependence, which we now demonstrate using data from English and Welsh males

population.2

Let

R(x, t) = 1− q(x, t+ 1)

q(x, t)

2The data from LifeMetrics have been graduated by cubic splines (see Coughlan et al., 2007).
The graduation removes sampling fluctuations, which may conceal the statistical properties of the
mortality rates.
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Figure 2: Values of ER for different values of j.

be the mortality reduction factor at age x and in year t, and let R̄(x) be the mean of

R(x, t) over the sample period (1961 to 2009). We calculate the sample correlation

between the reduction factors at ages x and y using the following formula:

ρ(x, y) =

∑
t

(
R(x, t)− R̄(x)

) (
R(y, t)− R̄(y)

)√∑
t

(
R(x, t)− R̄(x)

)2√∑
t

(
R(y, t)− R̄(y)

)2 .
In Figure 3 we display the calculated values of ρ(x, y). For example, the right

panel shows the values of ρ(x, 80) for different values of x. The analysis indicates

that a change in a mortality rate is significantly correlated with changes in mortality

rates at neighboring ages. The strength of the dependence, however, diminishes as

the age gap becomes wider.

To capture age dependence, we assume that a change in the jth key mortality

rate is accompanied with changes in mortality rates at ages that are close enough to

xj. Let s(x, j, δ(j)) be the shift at age x associated with a change δ(j) in the jth

key mortality rate. The function s, which may be viewed as an analog to a kernel in

density estimation, can take different forms. We suggest the following specification,

which uses a linear interpolation to approximate the diminishing dependence between

two mortality rates as the age gap becomes wider.
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Figure 3: Values of ρ(x, y) for y = 60, 70, 80.

For 2 < j < n− 1,

s(x, j, δ(j)) =


0 x ≤ xj−1
δ(j)(x−xj−1)

xj−xj−1
xj−1 < x ≤ xj

δ(j)(xj+1−x)
xj+1−xj

xj < x < xj+1

0 x ≥ xj+1

.

Note that the impact of δ(j) is fully absorbed by the time when x reaches the next

or the previous key age (i.e., xj−1 or xj+1). The specification of s is slightly different

for j = 1 and j = n. For j = 1, we change s to δ(1) when x ≤ x1, and for j = n, we

change s to δ(n) when x > xn. A similar specification is also used by Ho (1992) to

model shifts in an interest rate yield curve.

In effect, the shift in the whole mortality curve is approximated by the sum of

s(x, j, δ(j)), j = 1, 2, . . . , n. In Figure 4 we display the overall shift resulting from

arbitrary shifts in four key mortality rates, which are located at ages x1 = 65, x2 = 70,

x3 = 75, and x4 = 80. The diagrams illustrate how parallel and non-parallel shifts

can be approximated by the above specification.

3.3 Calculating key q-durations

A portfolio’s price sensitivity to a shift in a key mortality rate is referred to as a key

q-duration.
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Figure 4: Approximation of the shift in a mortality curve as a sum of s(x, j, δ(j)),

j = 1, 2, 3, 4. The values shown are arbitrary.

Let q be the original mortality curve, and let q̃(j) by the mortality curve affected

by δ(j), according to the way in which s(x, j, δ(j)) is defined. The jth key q-duration

of a portfolio is given by

KQD(P (q), j) =
P (q̃(j))− P (q)

δ(j)
, (1)

where P (q) is the value of the portfolio on the basis of the mortality curve q. The

number KQD(P (q), j) measures the portfolio’s price sensitivity to the jth key rate,

and the vector {KQD(P (q), j); j = 1, 2, . . . , n} as a whole measures the portfolio’s

price sensitivity to the entire mortality curve.

In most cases, it is difficult to analytically calculate a key q-duration. For practical

purposes, we may estimate KQD(P (q), j) as follows:

1. take q as the best estimate of the underlying mortality curve;

2. assuming δ(j) is 10 basis points, calculate q̃;
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Figure 5: Settlement of a mortality forward at maturity.

3. compute KQD(P (q), j) with equation (1).

4 Building a Longevity Hedge

4.1 Hedging Instruments

Given the key q-durations of a portfolio, it is easy to construct a longevity hedge

for the portfolio with a series of mortality forwards. A mortality forward is a zero-

coupon swap that exchanges on the maturity date a fixed amount, determined at

time 0, for a random amount that is proportional to an age-specific mortality rate

for a certain population (the reference population) in some future time (the reference

year). Because there is a lag in the availability of the index data, the reference year

may be slightly earlier than the maturity date.

The fixed payment is proportional to the so-called forward mortality rate for the

reference population. This rate is chosen so that no payment exchanges hands at

inception. However, at maturity, a net payment will be made by one counterparty or

the other. The settlement that takes place at maturity is illustrated diagrammatically

in Figure 5. The fixed receiver, for example, receives at maturity 100 times the

notional amount times the difference between the fixed and realized mortality rates.

An entity wishing to hedge longevity risk could enter into a portfolio of mortal-

ity forwards in which it receives fixed mortality rates and pays realized mortality

rates. At maturity, the mortality forwards will pay out to the hedger an amount that

increases as mortality rates fall to offset the unexpected increase in the hedger’s lia-

bility. Provided that the weight on each mortality forward is calibrated properly, the

resulting longevity hedge can stabilize the hedger’s liability with respect to changes
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Figure 6: Illustrative expected and forward mortality curves.

in mortality rates.

The fixed payer can be an investor wishing to take longevity risk for a risk pre-

mium. To attract investors (fixed rate payers), the forward mortality rate must be

smaller than the corresponding expected mortality rate, so that on average (i.e., if

mortality is realized as expected), the investor will be paid. The difference between

expected and forward rates, therefore, indicates the expected risk premium to the

investor. In Figure 6 we illustrate the relationship between forward and expected

mortality rates at a certain age for different times to maturity. A widening diver-

gence is expected, because investors demand a higher risk premium from a longer

term contract, which involves a prediction further into the future.

4.2 Determining the weight on each mortality forward

To make the hedge effective, the portfolio being hedged and the portfolio of mortality

forwards must have similar price sensitivities to the underlying mortality curve. The

sensitivities for both portfolios can be measured by key q-durations.

The key q-durations for a mortality forward can be computed analytically. Con-

sider a mortality forward that is linked to jth key mortality rate. Assuming a notional
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amount of $1, the present value of the mortality forward (from a fixed receiver’s view-

point) can be written as

Fj(q) = 100(1 + r)−Tj (qf (xj, tj)− q(xj, tj)),

where Tj is the time to maturity (in years), r is the interest rate at which cash flows are

discounted, qf (xj, tj) is the forward mortality rate for reference age xj and reference

year tj. The difference tj − xj is the year of birth for the cohort of individuals in

question. It is obvious that

KQD(Fj(q), j) = −100(1 + r)−Tj . (2)

Furthermore, it is noteworthy that according to the way we specify the key rate shifts,

Fj(q) is unaffected by changes in other key rates, which means KQD(Fj(q), i) must

be zero for any i 6= j. This important property allows us to determine the appropriate

weight on each mortality forward independently. It also makes mortality forwards an

analog to zero-coupon bonds in Ho’s (1992) framework for hedging interest rate risk.3

Let V be the time-0 value of the portfolio being hedged. We can construct a hedge

with mortality forwards that are linked to the n key mortality rates. Specifically, to

make V and the portfolio of mortality forwards have similar sensitivities to q, we

need a notional amount of

w(j) =
KQD(V (q), j)

KQD(Fj(q), j)

on the mortality forward linked to the jth key mortality rate.

5 An Illustration

5.1 The hedge

We now illustrate the hedging framework with a simple synthetic pension plan, which

pays a pensioner $1 at the beginning of each year until the pensioner dies or reaches

age 91, whichever is earlier. In the illustration, the following assumptions are made.

3The price of a zero-coupon bond is sensitive only to a shift in the corresponding key interest rate
but not other key rates on the yield curve. This property makes it is straightforward to construct an
interest rate hedge with zero-coupon bonds, when key rate durations of the portfolio being hedged
are known.
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1. The pensioner is exactly 60 years old at time 0.4

2. The pensioner’s mortality experience is exactly the same as that of English and

Welsh males with the same year of birth. This assumption will be relaxed in

Section 5 when basis risk and sampling risk are studied.

3. The best estimate of the underlying mortality curve is based on the central

projection made by the Cairns-Blake-Dowd model (Cairns et al., 2006), fitted

to the data from the population of English and Welsh males.

4. The interest rate at which cash flows are discounted is r = 3%.

5. Mortality forwards linked to ages 65, 70, 75, 80 and 85 for the same birth cohort

are available.

6. For each mortality forward, the maturity date (the date when the payment is

settled) is one year after the reference year.

7. The forward mortality rates are the same as the corresponding best estimate

mortality rates. This assumption, which implies zero risk premium, would affect

the cost but not the performance of the longevity hedge.

In our baseline calculations, we make use of all five available mortality forwards.

We set the key mortality rates to mortality rates at ages 65, 70, 75, 80, and 85. The

key q-durations for the mortality forwards are calculated analytically using equation

(2), while those for the pension liability are calculated numerically using the procedure

described in Section 3.3. The calculated key q-durations are displayed in Table 1. Also

shown in the table are the required notional amounts of the mortality forwards in the

replicating portfolio.

5.2 Hedge effectiveness

We can evaluate hedge effectiveness by examining the variability in the present value

of unexpected cash flows. If a pension plan is unhedged, the present value of the

unexpected cash flows from the plan can be expressed as

X = V (q)− V (E(q)),

4We set time 0 to the beginning of year 2010, because 2009 is the latest year for which English
and Welsh male mortality data are available.

14



j = 1 j = 2 j = 3 j = 4 j = 5

xj 65 70 75 80 85

KQD(Fj(q), j) −83.7484 −72.2421 −62.3167 −53.7549 −47.7606

KQD(V (q), j) −99.9761 −38.4377 −24.0862 −12.4439 −7.5237

w(j) 1.1938 0.5321 0.3865 0.2315 0.1575

Table 1: Key q-durations and the required notional amounts.

where V is the time-0 value of the pension liability, and E(q) is the best estimate of

q. By contrast, if there is a longevity hedge for the pension plan, then the present

value of the unexpected cash flows from the plan can be written as

X∗ = V (q)− V (E(q))−H(q) +H(E(q)),

where H is the present value of all payoffs from the instruments in the hedge portfolio.

Of course, both X and X∗ are random quantities as they depend on a random vector

q. The longevity hedge is effective if X∗ is significantly less variable than X. As

such, we can measure hedge effectiveness in terms of the amount of risk reduction,

R, which is defined by

R = 1− σ2(X∗)

σ2(X)
,

where σ2(X) and σ2(X∗) are the variances of X and X∗, respectively. A higher value

of R indicates a better hedge effectiveness.

We simulate 5,000 realizations of q on the basis of the Cairns-Blake-Dowd model

(Cairns et al., 2006) fitted to data from English and Welsh male population. For

each realization of q, we calculate the values of X and X∗. This create empirical

distributions of X and X∗, from which the amount of risk reduction can be calculated.

The portfolio of five mortality forwards gives a risk reduction of R = 97.2%. The

reduction in risk can be visualized from Figure 7, in which the empirical distributions

of X and X∗ are displayed.

To examine how the amount of risk reduction is related to the number of mortality

forwards used, we repeat the analysis by using four mortality forwards (linked to ages

65, 70, 75 and 80) and three mortality forwards (linked to ages 65, 70, 75). The

resulting empirical distributions of X∗ are shown in Figure 7. The hedge effectiveness
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is reduced to 94.2% and 77.5% when four and three mortality forwards are used,

respectively.

5.3 Impact on solvency capital requirement

Solvency II represents a new set of regulatory requirements for insurance firms that

operate in the European Union. It is scheduled to come into effect in 2013, replacing

Solvency I, which has been in place since the early 1970s.

Under Solvency II, longevity risk is split into two components. The allowance for

expected future improvements in mortality is included as Technical Provisions (TP),

while the uncertainty concerning the actual future evolution of mortality is covered

by the Solvency Capital Requirement (SCR). In principal, SCR is determined as the

value-at-risk over a one-year horizon with a 99.5% confidence level.

Insurance companies may compute longevity SCR with an approved internal risk

model or, more conveniently, by a standard formula prescribed by the Committee of

European Insurance and Occupational Pensions Supervisors (CEIOPS). The setup
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s = 0.2 s = 0.25

SCR 0.7076 0.8958

SCR∗ [key ages: 65, 70, 75, 80, 85] 0.0021 0.0140

SCR∗ [key ages: 65, 70, 75, 80] 0.0311 0.0501

SCR∗ [key ages: 65, 70, 75] 0.0946 0.1296

Table 2: Longevity SCR at stress levels 20% and 25%.

and calibration of the standard formula is currently being established by a series of

Quantitative Impact Studies (QIS). In QIS4, the proposal for the standard formula

for longevity SCR is to stress-test using an immediate and permanent 25% fall in

mortality rates (CEIOPS, 2008). In QIS5, however, it was decided to reduce the

stress to 20%, due possibly to the criticism from the insurance industry that a flat

shock of 25% is too stringent (CEIOPS, 2010). We refer interested readers to Börger

(2010) for a recent study on longevity SCR.

Let s be the flat shock prescribed by CEIOPS. In the absence of a longevity hedge,

the longevity SCR can be expressed as

SCR = V ((1− s)E(q))− V (E(q)).

If a longevity hedge is in place, the longevity SCR is given by

SCR∗ = V ((1− s)E(q))− V (E(q))−H((1− s)E(q)) +H(E(q)).

We now study how the proposed hedging strategy may reduce longevity SCR. In

Table 2 we display the longevity SCR for the synthetic pension plan, with and without

a longevity hedge. At the stress levels of 20% and 25%, the hedge with five mortality

forwards can reduce the SCR for the pension plan by 99% and 98%, respectively. The

reductions in SCR are smaller if fewer mortality forwards are used, but they are still

significant.

5.4 Proximity to optimality

The longevity hedge based on key q-durations is effective, but may not be the most

effective, as key q-durations are only approximate measurements of the sensitivity to

q. Here we study if a more effective hedge can be formed with the same mortality

forwards, and if it can be formed, how much more effective it would be.
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Suppose that our sole objective is to maximize the amount of risk reduction, R,

produced by the hedge. To achieve this objective, we can gradually adjust the weight

on each of the five mortality forwards until the maximum value of R is attained.

The value of R in each iteration can be estimated by simulating from a stochastic

mortality model. In our illustration, the Cairns-Blake-Dowd model fitted to English

and Welsh male data is used.

We found that, on the basis of the five mortality forwards we consider, the optimal

amount of risk reduction is 98.5%, which is 1.3% higher that achieved by using key

q-duration. The result indicates that key q-durations can yield an amount of risk

reduction that is not too far from the maximum attainable value.

Note that the optimization procedure, which involves simulations and a maximiza-

tion of a multivariable function, demands a lot of computational resources. It works

for the synthetic pension plan we consider, but may not be feasible for a sophisticated

pension plan in real life. Key q-durations, in contrast, are much easier to calculate

and are not dependent on a specific simulation model.

5.5 Choosing key mortality rates

Our hedging strategy requires mortality forwards that are linked to the key mortality

rates chosen. In the early stages of the market’s development, it is expected that

transactions are restricted to a limited number of contracts in which liquidity can be

concentrated. Therefore, the choice of key mortality rates is exogenous, depending

on the instruments that are available in the market. In our baseline calculations, we

assumed that mortality forwards linked to ages 65, 70, 75, 80 and 85 for the cohort

in question are available, and chose the key mortality rates accordingly.

Now suppose that mortality forwards linked to all rates on q are available. In this

case, which five key mortality rates (mortality forwards) should we choose? We answer

this question by comparing the hedge effectiveness provided by all combinations of

key mortality rates. Since the synthetic pension plan involves 31 mortality rates (from

ages 60 to 90), there are altogether 169 911 possible combinations.

We found that the maximum amount of risk reduction is attained if the key

mortality rates are located at ages 62, 67, 73, 79 and 85. These ages are roughly

evenly spaced, and are close to the key mortality rates used in the baseline calculation.

This combination of key mortality rates yields a hedge effectiveness of 98.3%, which is
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1.1% higher than that achieved in the baseline calculation. Our findings suggest that,

to concentrate liquidity and to attract demand from pension plans, it makes sense

for investment banks to issue mortality forwards that are linked to rates representing

different segments of a mortality curve.

5.6 Comparing with an alternative strategy

In this subsection, we compare our hedging strategy with that proposed by Cairns

et al. (2008). As a shorthand, we call their strategy the CBD (Cairns-Blake-Dowd)

strategy.

Let S(x, t) be the probability that a person currently aged x will survive t years

more. The CBD strategy is based on the following first order approximation of S(x, t):

S(x, t) = (1− q(x, t0)) (1− q(x+ 1, t0 + 1)) . . . (1− q(x+ t− 1, t0 + t− 1))

=
t−1∏
i=0

(
1− qf (x+ i, t0 + i)−∆(x+ i, t0 + i)

)
≈

t−1∏
i=0

(
1− qf (x+ i, t0 + i)

)
−

t−1∑
i=0

∆(x+ i, t0 + i)
t−1∏

j=0,j 6=i

(
1− qf (x+ j, t0 + j)

)
,

where ∆(x+ i, t0 + i) = q(x+ i, t0 + i)− qf (x+ i, t0 + i).

The first term in the approximation is non-random, while the the second term is

just a linear combination of the random mortality rates. Hence, the coefficients in the

second term tell us the amounts of mortality forwards needed to hedge a liability that

depends on S(x, t). In particular, to hedge a liability that pays a random amount of

S(x, t) at time t0 + t, the hedger needs to be the fixed receiver of t mortality forwards,

and the required notional amount of the ith, i = 1, 2, . . . , t, mortality forward is given

by

1

100(1 + r)t−Ti

t−1∏
j=0,j 6=i

(
1− qf (x+ j, t0 + j)

)
.

The hedge for the synthetic pension plan, which has a present value of

30∑
t=0

S(60, t)

(1 + r)t
,

19



can be derived accordingly.

Similar to our strategy, the CBD strategy has the advantage of being model free.

Nevertheless, it completely ignores the property of age dependence, and as we now

demonstrate, the ignorance of age dependence can be a serious problem.

Recall that the synthetic pension plan involves 31 random mortality rates. We first

implement both our strategy and the CBD strategy with 31 contracts, each of which

is linked to a different point on the underlying mortality curve. Using 31 contracts,

both strategies yield an almost perfect hedge effectiveness of 99.9%, and in fact, the

required notional amounts calculated from both methods are identical. The identical

results are not surprising, because in the extreme case when all rates in the mortality

curve are key rates, our model for key rate shifts would imply no age dependence,

which makes both methods the same in principle.

However, when we use less contracts, the difference between the two strategies

would become apparent. Now we consider the five mortality forwards used in our

baseline calculations. Using these five contracts, our strategy produces a hedge ef-

fectiveness of 97.2%, but the CBD strategy gives only 35.0%. The CBD strategy

does not perform well in this case, because, as it ignores age dependence, it under-

estimates the price sensitivity of the pension liability to the five mortality rates, and

hence understates the required notional amounts.

This comparison points to the conclusion that it is crucially important to take age

dependence into account when measuring mortality rate sensitivities. To ameliorate

the problem of the CBD strategy, Cairns et al. (2008) suggest that we may consider

average (or ‘bucketed’) mortality rates instead. However, as they point out, using

average mortality introduces some basis risk depending on the specific age-structure

of the population being hedged. It is also unclear about how mortality rates should be

‘bucketed,’ particularly when the pension plan involves more than one birth cohorts.

6 Hedging Multiple Cohorts

In Section 3, we presented key q-durations in a one-dimensional setting. This simple

setting is easy to understand, and is adequate for hedging the longevity risk arising

from one birth cohort. However, in practice, pension plans involve multiple birth

cohorts, and therefore when we construct a longevity hedge, we may need to con-

sider a group of mortality curves simultaneously. In this section, we generalize key
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Figure 8: The initial demographic structure of the illustrative multi-cohort pension

plan.

q-durations to a two-dimensional setting, which can then be used to hedge the un-

certainty arising from the evolution of a ‘surface’ that is composed of more than one

mortality curves.

We illustrate the two-dimensional generalization using a synthetic pension plan

with members ranging from age 60 to 80 at time 0 (the beginning of year 2010). The

bar chart in Figure 8 summarizes the initial demographic structure of the plan. We

assume again that the plan pays each pensioner $1 at the beginning of each year until

the pensioner dies or reaches age 91, whichever is earlier. For simplicity, we assume

further that the plan is closed, that is, there is no new entrants to the plan after time

0.

The plan involves 21 birth cohorts, with the youngest born in 1950 and the oldest

in 1930. In total, it is subject to the uncertainty associated with 441 future death

rates. Assuming that the maximum allowable separation between two key mortality

rates is five years of age, our strategy in a one-dimensional setting would require 76

21



contracts. It is unlikely that the longevity market can provide such a wide variety of

standardized contracts. Even if the required contracts are available, the complexity

of the hedge would make it costly and difficult to manage in the future.

To mitigate this problem, we attempt to consider the potential dependence along

the year of birth dimension. Let us consider the group of individuals who were born

in year c. We let

R∗(x, c) = 1− q(x, c+ x+ 1)

q(x, c+ x)

be their mortality reduction factor at age x, and let R̄∗(c) be the mean of R∗(x, c)

over the sample age range for that cohort. To examine the dependence across cohorts,

we calculate the sample correlation between the reduction factors for year of births c

and d with the following formula:

ρ∗(c, d) =

∑
x

(
R∗(x, c)− R̄∗(c)

) (
R∗(x, d)− R̄∗(d)

)√∑
x

(
R∗(x, c)− R̄∗(c)

)2√∑
x

(
R∗(x, d)− R̄∗(d)

)2 ,
where the summations are taken over the common sample age range for both cohorts.

The calculated values of ρ∗(c, d) for d = 1910, 1930, 1950 and for c = d − 5, d −
4, . . . , d + 5 are displayed in Figure 9.5 The patterns of ρ∗(c, d) indicates that mor-

tality improvement rates of neighboring cohorts are significantly correlated with one

another, but the strength of the correlation tapers off as the birth cohorts are wider

apart. The analysis of ρ∗(c, d) motivates us to generalize the way in which a key

rate shift is modeled. Specifically, in what follows, we assume that a shift in a key

mortality rate for a birth cohort would affect mortality rates for not only the same

but also the neighboring cohorts.

In the two-dimensional setting, a mortality surface is represented by the key mor-

tality rates for m key cohorts, who were born in years c1, . . . , cm, respectively. The

mortality curve for key cohort k, k = 1, . . . ,m, contains nk key mortality rates, which

are located at ages x1,k, x2,k, . . . , xnk,k (from smallest to largest). We identify the jth

key mortality rate on the kth key cohort as the (j, k)th key mortality rate.

To hedge the synthetic pension plan, we consider k = 4 key cohorts, with c1 =

1947, c2 = 1943, c3 = 1939 and c4 = 1935. Each key cohort contains key mortality

5Before calculating ρ∗(c, d), the data have been graduated by cubic splines to remove sampling
fluctuations, which may conceal the statistical properties of the mortality rates.
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Figure 9: Values of ρ∗(c, d) for d = 1910, 1930, 1950.

k nk Locations of key mortality rates

1 5 Ages 65, 70, 75, 80, 85

2 4 Ages 70, 75, 80, 85

3 3 Ages 75, 80, 85

4 2 Ages 80, 85

Table 3: Locations of the key mortality rates used in hedging the multi-cohort syn-

thetic pension plan.

rates that are no more than 5 years of age apart. The strategy we use can be visualized

from the lexis diagram in Figure 10. The locations of the 14 key mortality rates used

are shown in Table 3. We assume that mortality forwards linked to the key mortality

rates are available in the market.

Let δ(j, k) be the shift in the (j, k)th key mortality rate. Our goal is to model

s(x, c, (j, k), δ(j, k)), the impact of δ(j, k) on the mortality rate for age x and for year

of birth c. For j = 2, . . . , nk − 1 and for k = 2, . . . ,m− 1, we set

s(x, c, (j, k), δ(j, k)) = δ(j, k)α(x, j, k) β(c, j, k),
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Figure 10: The key cohorts used in the hedging strategy for the multi-cohort synthetic

pension plan.

where

α(x, j, k) =


0 x ≤ xj−1,k
x−xj−1,k

xj,k−xj−1,k
xj−1,k < x ≤ xj,k

xj+1,k−x
xj+1,k−xj,k

xj,k < x < xj+1,k

0 x ≥ xj+1,k

,

and

β(c, j, k) =


0 c ≤ cj,k−1
c−cj,k−1

cj,k−xj,k−1
cj,k−1 < c ≤ ck,j

ck+1,j−c
ck+1,j−ck,j

ck,j < c < ck+1,j

0 c ≥ ck+1,j

.

Similar to the one-dimensional setting, the effect of δ(j, k) diminishes as x is farther

way from xj, and is fully absorbed when xj−1 or xj+1 is reached. The dependence along

the year of birth dimension is also modeled in a similar manner. In particular, the

impact of δ(j, k) reduces linearly with the distance between c and ck, and is reduced
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Figure 11: The impact of δ(2, 2) = 0.0001 on other mortality rates that are involved

in the synthetic multi-cohort pension plan.

to zero when ck−1 or ck is reached. As an example, in Figure 11 we demonstrate how

we model the impact of δ(2, 2) = 0.0001 on other mortality rates that are involved in

the synthetic multi-cohort pension plan.

The specification of α is slightly different for the first and last key mortality rates

in a key cohort. For j = 1, we set α to 1 when x ≤ x1,k, and for j = nk, we set α to

1 when x > xnk,k. Also, for k = 1, we set β to 1 when c ≤ cj,1, and for k = m, we set

β to 1 when c > cj,m. It is easy to see that the way we specify s permits a mortality

surface to shift in both parallel and non-parallel fashions.6

Given s(x, c, (j, k), δ(j, k)), it is straightforward to calculate of the key q-duration

associated with the (j, k)th key mortality rate. Let Q and Q̃(j, k) be original mortality

surface and the mortality surface affected by δ(j, k), respectively. Then the key q-

duration with respect to the (j, k)th key mortality rate is given by

KQD(P (Q), (j, k)) =
P (Q̃(j, k))− P (Q)

δ(j, k)
,

where P (Q) is the value of the portfolio on the basis of the mortality surface Q.

6Setting δ(j, k) for all j and k to the same value would imply a parallel shift.
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The set of key q-durations {KQD(P (Q), (j, k)); j = 1, . . . , nk; k = 1, . . . ,m} as a

whole measures the portfolio’s price sensitivity to the entire mortality surface. We

can adapt the algorithm in Section 3.3 accordingly to estimate the key q-durations

for a multi-cohort pension plan.

Let Fj,k(Q, (j.k)) and Tj,k be the present value (from the fixed receiver’s viewpoint)

and the time to maturity (in years) of a unit-notional mortality forward written

on the (j, k)th key mortality rate, respectively. As in the one-dimensional setting,

KQD(Fj,k(Q), (h, i)) is−100(1+r)−Tj,k if h = j and i = k, and is zero otherwise. This

means that we can determine the weights on the mortality forwards independently.

The appropriate notional amount of the mortality forward linked to the (j, k)th key

mortality rate is

w(j, k) =
KQD(V (Q), (j, k))

KQD(Fj,k(Q), (j, k))
.

Assuming that assumptions 2, 3, 4, 6 and 7 in Section 5.1 still hold, we calculate

the required notional amount of each mortality forward in the hedge portfolio. The

details of the mortality forwards are summarized in Table 4.

As before, we evaluate the effectiveness of the hedge by examining X and X∗.

Figure 12 shows the simulated distributions of X and X∗, which are based on 5,000

realizations of Q simulated from the fitted Cairns-Blake-Dowd model. The amount

of risk reduction, R, provided by the portfolio of 14 mortality forwards is 95.8%. The

results indicate that the two-dimensional extension can help us create a highly effec-

tive hedge for multi-cohort pension plans with a relatively small number of hedging

instruments.

7 Other Issues

7.1 Small sample risk

In previous illustrations, we assume that there is no small sample risk (or sampling

risk), that is, the risk that the realized mortality experience is different from the true

mortality rate. Small sample risk is diversifiable, so it does not matter much if the

pension plan is sufficiently large. However, for smaller plans, small sample risk may

be significant and may affect the hedge’s effectiveness.
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Figure 12: Simulated distributions of X and X∗ for the multi-cohort synthetic pension

plan.

Let us consider again the synthetic pension plan described in Section 5.1 and

suppose that all assumptions (except assumption 2) continue to hold. The plan

involves a single cohort of individuals who were born in year 1950 (aged 60 at time

0). We let l(60) be the initial number of pensioners, and l(x) be the number of

pensioners who will survive to age x, x = 61, 62, . . .. We incorporate small sample

risk by treating the cohort of pensioners as a random survivorship group. This means

that l(x) for x > 60 is still a random variable even if the mortality curve q for the

pensioners is completely known.

We model small sample risk with the following binomial death process:

l(x+ 1) ∼ Binomial(l(x), 1− q(x, 1950 + x)), x = 60, 61, . . . , 90,

which is then incorporated into the procedure for simulating unexpected cash flows

as follows:

1. simulate a mortality curve, q using the fitted Cairns-Blake-Dowd model;

2. for each simulated q, simulate the number of survivors l(x), x = 61, . . . , 91;
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j k Time to maturity, Tj,k Ref. age Ref. year Notional amt., w(j, k)

1 1 3 65 2012 8259.0

2 1 8 70 2017 5747.6

3 1 13 75 2022 4019.9

4 1 18 80 2027 2425.1

5 1 23 85 2032 1301.9

1 2 4 70 2013 5601.5

2 2 9 75 2018 3178.8

3 2 14 80 2023 1946.7

4 2 19 85 2028 1067.1

1 3 5 75 2014 4270.1

2 3 10 80 2019 1645.5

3 3 15 85 2024 917.3

1 4 6 80 2015 3331.6

2 4 11 85 2020 1251.7

Table 4: Reference ages, reference years and notional amounts of the mortality for-

wards in the longevity hedge for the multi-cohort synthetic pension plan.

3. calculate cash flows on the basis of the simulated l(x);

4. repeat steps 1-3 to derive empirical distributions of the unexpected cash flows.

As in Section 5.1, mortality forwards with reference ages 65, 70, 75, 80 and 85 are

used. Note that there is no change to the key q-durations.

In Figure 13 we depict the simulated distributions of the hedged and unhedged

cash flows for different values of l(60). When l(60) = 10, 000, the hedge appears to be

equally effective as that when small sample risk is not taken into account. However,

for smaller values of l(60), small sample risk has a significant effect on the reduction

in volatility. To quantify the effect of small sample risk, we calculate the amount

of risk reduction, R, for different values of l(60) (see Table 5). The amount of risk

reduction is reduced to only 66% when the initial number of pensioners is 500. This

analysis suggests that for a small pension plan with say fewer than 500 members,

a bespoke hedge may be a better alternative to one that is based on standardized

instruments.
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Figure 13: Simulated distributions of X and X∗ for different values of l(60).

7.2 Basis risk

When a hedger relies on standardized mortality forwards to hedge its longevity risk

exposure, it is inevitably subject to the risk associated with the difference in the

mortality experience between the hedger’s population and the population to which

the mortality forwards are linked. This risk, which is referred to as basis risk, has

recently been studied by researchers including Cairns et al. (2011) and Coughlan et

al. (2010).

Let q1 and q2 be the mortality curve for the hedger’s population (population 1)

and the reference population of the mortality forwards (population 2), respectively.

In general, q1 and q2 are different, because of, for example, differing profiles of so-
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l(60) R

+∞ 97.20%

10, 000 95.06%

3, 000 90.20%

1, 000 77.86%

500 66.01%

Table 5: Values of R for different values of l(60).

cioeconomic group, lifestyle and geography.

The existence of basis risk makes a difference to the calculation of the weights

on the mortality forwards. With basis risk, the appropriate weight on the mortality

forward linked to the jth key mortality rate is given by

w(j) =
KQD(V (q1), j)

KQD(Fj(q1), j)
=
KQD(V (q1), j)

KQD(Fj(q2), j)

∂q(xj, tj, 1)

∂q(xj, tj, 2)
, (3)

where q(xj, tj, i), i = 1, 2, is the jth key mortality rates for population i. The cal-

culation of the adjustment factor
∂q(xj ,tj ,1)

∂q(xj ,tj ,2)
is not straightforward, and may require a

two population mortality model.

We consider the augmented common factor model (Li and Lee, 2005), which is

defined as follows:

ln(m(x, t, i)) = a(x, i) +B(x)K(t) + b(x, i)k(t, i) + ε(x, t, i), i = 1, 2,

K(t) = c+K(t− 1) + ξ(t),

k(t, i) = φ0(i) + φ1(i)k(t− 1, i) + ζ(t, i), i = 1, 2,

where m(x, t, i) is the central death rate (at age x and year t) for population i; ε(x, t, i)

is the error term; c, φ0(i), and φ1(i) are constants; and ξ(t) and ζ(t, i) are innovation

terms, i.i.d. normal with zero mean. The model assumes mortality rates for both

populations are driven by a common stochastic factor, K(t), which follows a random

walk with drift, and a population specific stochastic factor, k(t, i), which follows a

first order autoregressive model. Parameters B(x) and b(x, i) are the sensitivities to

K(t) and k(t, i), respectively.

In a parallel study, Li and Hardy (2011) proved that if the augmented common

factor model is assumed, the adjustment factor in equation (3) can be calculated as
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Hedger’s population With basis risk Without basis risk

Canadian males 85.30% 95.18%

French males 87.56% 94.58%

Scottish males 87.48% 94.69%

Table 6: Values of R when population basis risk is present and absent.

follows:

∂q(x, t, 1)

∂q(x, t, 2)
=
q(x, t, 1)(1 + 0.5m(x, t, 2))2A(x, t, 1)

q(x, t, 2)(1 + 0.5m(x, t, 1))2A(x, t, 2)
, (4)

where A(x, t, i) = B(x)c + b(x, i)φ1(i)
t−t0(φ0(i) + (φ1(i)− 1)k(t0, i)) for i = 1, 2, and

t0 denotes the year when the hedge is set up.

Let us revisit the synthetic pension plan described in Section 5.1. Suppose that all

assumptions except assumption 2 still hold. We now allow the hedger’s population

to be different from the population to which the hedging instruments are linked.

Specifically, we assume that the mortality forwards in the hedge portfolio are linked

to the UK male population, while the hedger’s population is either Canadian males,

French males or Scottish males.

For each case, we calculate the appropriate weights on the five mortality forwards

with equations (3) and (4). We then simulate the distributions of the unexpected cash

flows, hedged and unhedged, on the basis of the augmented common factor model

that is fitted to the corresponding pair of populations. The simulated distributions

are displayed in Figure 14. The results indicate that a properly weighted portfolio of

mortality forwards can reduce a significant amount of risk, even if basis risk exists.

Also shown in Figure 14 are the corresponding distributions when basis risk is

absent, that is, when the hedge is created with mortality forwards that are linked to

the hedger’s own population. We observe that the reductions in variability are less

remarkable when basis risk is present. The impact of basis risk can also be seen from

Table 6, which shows the values of R for all cases we consider. On average, basis

risk reduces the hedge effectiveness by 8%. The impact of basis risk is the highest

when the hedger’s population is linked to the population of Canadian males, which

is possibly the least related to the population on which the mortality forwards are

based.
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Figure 14: Simulated distributions of X and X∗, with and without basis risk.
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8 Concluding Remarks

In this paper, we introduced a measure called key q-duration, which enables us to

estimate the price sensitivity of a life-contingent liability to the underlying mortality

curve. Given the key q-durations of a portfolio, one can easily hedge the longevity

risk associated with the portfolio with only a handful of mortality forwards. The

method we propose is easy to implement, yet a hedge calibrated with our method

is almost equally effective as one that is calibrated with a computationally intensive

optimization.

As Solvency II is rapidly approaching, insurers are increasingly concerned about

the additional solvency capital requirement arising from their longevity risk exposures.

We demonstrated that our hedging strategy can substantially reduce the longevity

risk SCR of a pension portfolio. We emphasize that, however, hedgers must be aware

of the sampling risk and basis risk involved in a standardized longevity hedge. In

our illustration, basis risk can reduce a hedge effectiveness by 7-10%, while sampling

risk can reduce a hedge effectiveness by 2-30%, depending on the size of the portfolio

being hedged.

In practice, most pension plans involve a spectrum of birth cohorts. To improve

applicability, we extended key q-durations to a two-dimensional setting, which is

applicable to a mortality surface containing mortality curves for different birth co-

horts. We illustrated the two-dimensional extension with a synthetic pension plan

that involves 21 birth cohorts. The hedge we created could reduce the synthetic

plan’s longevity risk by 95.8%, while keeping the number of hedging instruments to

a manageable level. A method requiring a modest number of hedging instruments is

desirable, because when the market is still in its infancy, transactions are likely to be

restricted to a limited number of instruments in which liquidity can be concentrated.

In the absence of any pricing information, it is assumed in our calculations that

the forward mortality rates are the same as (not lower than) the corresponding best

estimate mortality rates, which equivalently means that the hedge is costless. How-

ever, when a hedger is given a quote of the relevant forward mortality rates, it can

easily incorporate the quoted forward rates into the simulations and calculate the

cost of the hedge. The hedger can then compare it with the costs associated with

other options, including bespoke longevity swaps and buy-ins, that is, the seeking of

a financial institution to insure (lock-in) its liabilities. A financially optimal decision

can then be made.
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When deriving our hedging strategy, it is assumed that the hedger intends to

eliminate as much longevity risk as possible. Some entities, however, may only want

to transfer a portion of the risk to capital markets. For instance, a life insurer may only

want to transfer to capital markets the residual longevity risk that cannot be naturally

hedged with its life insurance books. In future research, it would be interesting to

adapt the framework of key q-durations so that other hedging objectives, such as

hedging 50% of the total risk, can be used.

The calculation of key q-durations requires a central estimate of future mortality

and an assumed rate of interest. After the inception of the hedge, both quantities may

change as new information is unfolded. This means that key q-durations and hence

the optimal hedging strategy may also vary over time. With varying key q-durations,

we may be able to achieve a better hedge effectiveness by dynamically adjusting the

hedge portfolio. The benefit from dynamic hedging was not studied in this paper,

but certainly deserves an investigation when sufficient information about liquidity

and transaction costs becomes available.

In the absence of basis risk, the calculation of key q-durations does not require

a specific stochastic mortality model. However, when basis risk is present, we need

a two-population mortality model to estimate the adjustment term in equation (3).

This means that the resulting hedging strategy is inevitably subject to some model

uncertainty. Another avenue for future research to investigate how the adjustment

term may change if a different two-population mortality model, for example, the

models proposed by Cairns et al. (2011), is used. It is also warranted to validate the

resulting hedging strategy by non-parametric means such as the block bootstrap.
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