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Abstrat

Many users of mortality models are interested in using them to

plae values on longevity-linked liabilities and seurities. Modern reg-

ulatory regimes require that the values of liabilities and reserves are

onsistent with market pries (if available), whilst the gradual emer-

gene of a traded market in longevity risk needs methods for priing

new types of longevity-linked seurities quikly and e�iently. In this

study, we develop a new forward mortality framework to enable the ef-

�ient priing of longevity-linked liabilities and seurities in a market-

onsistent fashion. This approah starts from the historial data of

the observed mortality rates, i.e., the fore of mortality. Building on

the dynamis of age/period/ohort models of the observed fore of

mortality, we develop models of forward mortality rates and then use
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a hange of measure to inorporate whatever market information is

available. The resulting forward mortality rates are then used to value

a number of di�erent longevity-linked seurities, suh as q-forwards,

s-forwards and longevity swaps.

JEL Classi�ation: G12

Keywords: Mortality modelling, age/period/ohort models, forward

mortality rates, Essher transform, longevity-linked seurities

1 Introdution

Many users of mortality models are interested in using them to plae val-

ues on longevity-linked liabilities and seurities. Modern regulatory regimes

require that the values of liabilities and reserves are onsistent with mar-

ket pries (if available), whilst the gradual emergene of a traded market in

longevity risk needs methods for priing new types of longevity-linked seu-

rities quikly and e�iently. These needs have spurred the development of

inreasingly sophistiated models of mortality rates.

Cairns et al. (2006b) pointed out that the majority of mortality mod-

els that have been proposed are models of the mortality hazard rate, whih

is analogous to the short rate of interest. By analogy with interest rate

models, Cairns et al. (2006b) developed formally the onept of �mortality

forward rates�, whih was extended in Miltersen and Persson (2005). How-

ever, the idea of forward mortality rates has a long history, indeed Milevsky

and Promislow (2001) pointed out that �the traditional rates used by atu-

aries are really `forward rates' exatly analogous to a forward interest rate

implied by existing bond pries�.

Suh forward mortality rates ould be used to prie longevity-linked se-

urities, in the same fashion as forward interest rates are used to value ash-

�ows dependent on future interest rates. Therefore, a number of models for

forward mortality rates have been proposed to date whih build upon the

theory of forward interest rates. These have inluded the models of Barbarin

(2008), Bauer et al. (2008) and Tappe and Weber (2013), whih adopted

the Heath-Jarrow-Morton framework used for interest rates in ontinuous

time, and the model of Zhu and Bauer (2011a,b, 2014) whih adopted a
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semi-parametri fator approah in disrete time. An alternative approah,

developed in Olivier and Je�rey (2004), Smith (2005) and Cairns (2007),

also works in disrete time but uses gamma-distributed random variables to

update a forward mortality surfae that is initially assumed.

However, it is important not to over-extend the analogy between interest

rates and mortality rates, as the two are fundamentally di�erent proesses.

Most obviously, the forward interest rate urve at any instant depends only

upon term, whilst forward mortality rates will exist aross a surfae of ages

and years. Mortality rates typially also inrease exponentially with age,

unlike interest rates whih are typially bounded as term inreases. More

fundamentally, the analogy between survivorship under a fore of mortality

and disounting under a fore of interest, whilst mathematially appealing,

is not exat, sine mortality will a�et the atual amount of any ash�ow

payable (say, in an annuity or life assurane ontrat) in a way that dis-

ounting does not. We therefore do not believe that simply taking existing

models whih work well for forward interest rates and applying them diretly

to mortality rates is appropriate.

In addition, we must be able to alibrate a model of forward mortality

rates to the small number of longevity-linked seurities in existene. This

means that models whih start by assuming the existene of su�ient mar-

ket pries to de�ne a forward mortality surfae (suh as those based on the

Heath-Jarrow-Morton framework) and then de�ne the dynamis of this sur-

fae are not pratial. This approah is inherited from the interest rate

markets, where liquid markets in bonds aross the whole of the relevant term

struture an provide suh information. Unfortunately, this simply does not

hold for the market in longevity-linked seurities, and will not hold for the

foreseeable future.

Instead, we propose a new approah, whih is desribed in two studies,

of whih this is the �rst. Our approah starts from the historial data on

the observed mortality rates, i.e., the observed fore of mortality whih is

analogous to the short rate of interest. Building on the dynamis of models

of the observed fore of mortality, we an reast them in the form of models

of forward mortality rates and then use a hange of measure to inorporate

whatever market information is available. This approah ensures that the

dynamis of the forward mortality surfae are onsistent with those observed
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for the fore of mortality, inluding features suh as �ohort e�ets� whih

are unique to mortality rate models, and whih helps to ensure demographi

signi�ane.

1

We begin our analysis in this paper in Setion 2.1 with models of the

fore of mortality from the age/period/ohort (APC) family, whih have

been spei�ally onstruted in order to apture the dynamis of mortality

parsimoniously and with demographi signi�ane. APC mortality models

are onsidered in detail in Hunt and Blake (2015i) and enompass a broad

lass of existing and popular models of the fore of mortality, suh as the Lee-

Carter (Lee and Carter (1992)), Cairns-Blake-Dowd (Cairns et al. (2006a))

and lassi APC (Hobraft et al. (1982)) models, as well as many of the ex-

tensions of these models (see Hunt and Blake (2014) for examples). We then

develop the mathematial framework required to onvert any APC model of

the fore of mortality into a model of the forward mortality surfae in Setion

2.2 and Setion 2.3. In Setion 2.4, we use the dynamis of the period and

ohort parameters observed in the historial data to de�ne a forward surfae

of mortality rate. This enables onsistent modelling of both the short and

forward mortality rates, and so avoids any inonsistenies between the two.

Setion 3 then builds on this by transforming the forward mortality rate

surfae, using the Essher transform, from a measure onsistent with the

�real-world� proess observed in the historial data to one onsistent with

market pries. These �market-onsistent� forward mortality rates are then

used to prie various longevity-linked seurities. Finally, Setion 4 onludes.

The approah established in this paper is extended in our seond paper,

Hunt and Blake (2015d), whih analyses how the forward surfae of mor-

tality an be updated dynamially. This enables the forward mortality rate

framework developed in this paper to be used for managing longevity risk in

a life assurane book or in a portfolio of longevity-linked seurities.

1

Demographi signi�ane is de�ned in Hunt and Blake (2015i) as the interpretation of

the omponents of a model in terms of the underlying biologial, medial or soio-eonomi

auses of hanges in mortality rates whih generate them.
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2 Forward mortality rates in disrete time

2.1 Age/period/ohort models of the fore of mortality

In Hunt and Blake (2015i), we disussed disrete-time mortality models of

the form

ηx,t = αx +

N
∑

i=1

β(i)
x κ

(i)
t + γt−x (1)

where

• we have historial data for ages, x, in the range [1, X ] and periods, t,

in the range [1, τ ] and therefore observations of ohorts born in years,

y, in the range [1−X, τ − 1];

• ηx,t = ln(µx,t) is the log-link funtion whih onnets the Poisson dis-

tributed death ounts, Dx,t, to the proposed preditor struture;

• αx is a stati funtion of age;

• κ
(i)
t are period funtions governing the evolution of mortality with time;

• β
(i)
x are age funtions modulating the impat of the period funtion

dynamis over the age range;

2

and

• γy is a ohort funtion desribing mortality e�ets whih depend upon

a ohort's year of birth and follow that ohort through life as it ages.

De�ning βx =
(

β
(i)
x , . . . β

(N)
x

)⊤

and κt =
(

κ
(i)
t , . . . κ

(N)
t

)⊤

, we an re-

write Equation 1 as

ηx,t = αx + β⊤

xκt + γt−x (2)

In this paper, we will use the log-link funtion ηx,t = ln(µx,t). In Hunt

and Blake (2015i), we disussed how this is appropriate if the death ount

2

These an be non-parametri in the sense of being one �tted without imposing any a

priori shape for the funtion aross ages, or be parametri in the sense of having a spei�

funtional form, β
(i)
x = f (i)(x; θ(i)) seleted a priori. Potentially, parametri age funtions

an have free parameters θ(i) whih are set with referene to the data.
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at age x and time t is a (onditionally independent) Poisson random vari-

able, Dx,t ∼ Po(µx,tE
c
x,t), where Ec

x,t are entral exposures to risk. This is

preferred over the alternative hoie of the logit-link funtion and binomially

distributed death ounts due to the distributional properties of the forward

mortality rates, as disussed in Setion 2.3.

This struture de�nes the lass of age/period/ohort (APC) mortality

models and is very �exible. Many of the most ommon mortality models �t

into this struture, for instane, the benhmark Lee-Carter (LC) model of

Lee and Carter (1992), the ohort extension to this denoted H1 in Haberman

and Renshaw (2009), the Cairns-Blake-Dowd (CBD) model of Cairns et al.

(2006a) and many of its extensions in Cairns et al. (2009), the Plat model

of Plat (2009) and the model of Börger et al. (2013). In Hunt and Blake

(2014), we desribe a �general proedure� for onstruting bespoke models

within this lass whih are tailored to the struture within a given dataset.

3

It is, therefore, appropriate to use this lass of models of the fore of mortality

as the starting point for de�ning the forward mortality surfae, as disussed

below.

2.2 De�ning forward mortality rates

In a disrete-time framework, the fore of mortality, µx,t, at age x and time

t is assumed to be onstant over eah age and year, i.e.,

µx+ξ,t+τ = µx,t (3)

x, t ∈ N

ξ, τ ∈ [0, 1)

Therefore, the one-year survival probability from age x at time t to age x+1
at time t + 1, px,t,

4

is equal to px,t = exp(−µx,t). If we further assume that

3

The forward mortality framework desribed in this study is not signi�antly a�eted if

the ohort parameters are modulated by an age funtion, β
(0)
x , as in the model of Renshaw

and Haberman (2006). However, for simpliity and the reasons disussed in Hunt and

Blake (2015i), we do not onsider suh models in this study.

4px,t = 1− qx,t, the one-year probability of death.
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survival in eah year is onditionally independent, this implies

tpx,τ =

t
∏

u=1

px+u,τ+u = exp

(

−
t
∑

u=1

µx+u,τ+u

)

(4)

where tpx,τ is the survival probability of an individual from age x at time τ

to age x+ t at time τ + t.5 If τ + t lies in the future, tpx,τ will be a random

variable, as future values of the fore of mortality will be subjet to system-

ati mortality risk.

To de�ne the struture of forward mortality rates, we assume that the fun-

damental longevity-linked seurity

6

of interest, from whih all other longevity-

linked seurities an be onstruted, is the �longevity zero�.

7

A longevity

zero is de�ned in Blake et al. (2006) as a zero-oupon bond whih pays out a

prinipal at a future time, dependent on the survivorship of a suitably large

ohort (to redue the idiosynrati risk in the estimation of survival rates)

over the term of the bond.

8

Therefore, a t-year longevity zero at time τ

would have prie

Prie(t, τ) = B(τ, τ + t)EQ
τ tpx,τ

where B(τ, τ + t) is the time τ prie of a t-year zero oupon bond paying one

unit at maturity, and where the expetation is de�ned under some �market-

onsistent� measure, Q (to be disussed in Setion 3).

9

In doing so, we have impliitly assumed that the longevity risk is inde-

pendent of the other �nanial risks in the market, suh as interest rates and

5

0px,τ = 1 trivially.

6

In this paper, we use the term �seurity� to refer to any tradable �nanial ontrat,

and so also inlude derivative seurities suh as forwards and options in this de�nition.

7

Longevity zeros were also used to de�ne forward mortality rates in Barbarin (2008)

for use in a Heath-Jarrow-Morton framework and in Cairns (2007) and Alai et al. (2013)

to develop extensions of the Olivier-Smith model.

8

It is important that the seurity used to de�ne the forward mortality rates depends

purely on the systemati omponent of longevity risk, rather than on the idiosynrati time

of death of any individual lives, in order to avoid the potential for on�iting de�nitions

of the forward rates desribed in Norberg (2010).

9

We adopt the onvention that the subsript on operators Eτ (.), Varτ (.) or Covτ (.)
denotes onditioning on the information available at time τ , i.e., Fτ .

7



in�ation, in both the real-world measure, P, and the market-onsistent mea-

sure, Q. This is in ommon with the majority of studies, suh as Cairns

et al. (2006b) and Bauer et al. (2008) and with the available evidene to

date, as disussed in Loeys et al. (2007). Although there may be some situ-

ations where longevity risk is not independent of other �nanial risks in the

real-world measure, as in the examples of Miltersen and Persson (2005), we

believe that these situations are relatively extreme and are better onsidered

by senario analysis rather than through a stohasti model. Furthermore,

Dhaene et al. (2013) show that independene between longevity risk and

�nanial risks in the real-world measure does not automatially ensure in-

dependene in the market-onsistent measure. However, more ompliated

models are required in order to allow for any dependene between longevity

and investment risks, whih require more market information for alibration.

Therefore, we believe that the assumption of independene between longevity

risk and other �nanial risks is neessary and justi�able at this early stage

of development of the longevity risk market.

We de�ne

tP
Q
x,τ (τ) = EQ

τ tpx,τ (5)

= EQ
τ exp

(

−
t
∑

u=1

µx+u,τ+u

)

In this, tP
Q
x,τ(τ) are the market-onsistent forward survival probabilities,

i.e., the �market's best view� (in the words of Miltersen and Persson (2005))

at τ of the probability of an individual aged x at τ surviving a further t years.

Mathematially, we an see that these fators are analogous to disount fa-

tors based on the pries of zero-oupon bonds. It is this analogy whih has

motivated muh of the development of forward mortality rate models to date,

whih have been mainly adapted from widely used interest rate models. In

ontinuous-time forward rate models, suh as in Bauer et al. (2008), forward

mortality rates are de�ned from Equation 5 as

νQ
x,t(τ) ≡ − ∂

∂t
ln
(

tP
Q
x−t,τ(τ)

)

via the analogy with forward interest rates. In a disrete time model, we
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modify this to de�ne forward mortality rates as

νQ
x,t(τ) ≡ − ln

(

t−τ+1P
Q
x−t+τ,τ(τ)

t−τP
Q
x−t+τ,τ(τ)

)

(6)

Existing forward mortality models, suh as those in Cairns (2007) and

Zhu and Bauer (2011b, 2014) use similar de�nitions, but these studies are

interested in the dynamis of the forward surfae of mortality and so are

interested in the behaviour of νx,t(τ + 1)/νx,t(τ) , rather than the forward

mortality rates at τ themselves (whih are assumed a priori in these studies).

We disuss these dynamis in Hunt and Blake (2015d). In ontrast, this paper

is interested in the onnetion between the fore of mortality and forward

mortality rates, and so we use the de�nition above to give

tP
Q
x,τ(τ) = exp

(

−
t
∑

u=1

νQ
x+u,τ+u(τ)

)

(7)

Comparing Equations 4 and 7, we see

exp

(

−
t
∑

u=1

νQ
x+u,τ+u

)

= EQ
τ exp

(

−
t
∑

u=1

µx+u,τ+u

)

(8)

whih shows the onnetion between the market-onsistent forward rates and

the expetations of the fore of mortality in the market-onsistent measure.

By Jensen's inequality

EQ
τ exp

(

−
t
∑

u=1

µx+u,τ+u

)

≥ exp

(

−
t
∑

u=1

EQ
τ µx+u,τ+u

)

(9)

In pratie, the variation in µx,t is su�iently small that Equation 9 holds

approximately as an equality over almost all ages and years.

10

We therefore

make the assumption that

exp

(

−
t
∑

u=1

νQ
x+u,τ+u(τ)

)

= exp

(

−
t
∑

u=1

EQ
τ µx+u,t+u

)

(10)

10

This approximation is tested numerially in Appendix B.
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and de�ne the forward mortality rates as

νQ
x,t(τ) = EQ

τ µx,t (11)

Thus, the forward mortality rate at age x and year t is assumed to be equal

to the expetation under the market-onsistent measure of the fore of mor-

tality at the same age and year, onditional on information observed at time

τ . Thus, if we an speify the dynamis of the fore of mortality (in the

market-onsistent measure), we are able to �nd the forward mortality rates

diretly.

We de�ne the �forward mortality surfae� as the olletion of forward

mortality rates, νQ
x,t(τ) over all ages, x, and future years, t, at a given point

in time, τ . In most ases, it is more natural to onsider the forward mortal-

ity surfae as a single objet, sine the individual forward mortality rates are

expeted to vary smoothly aross ages and aross future years. However, it is

important to realise that the forward mortality surfae is three-dimensional,

de�ned by x, t and τ . In this paper we shall onsider its struture aross the

dimensions of x and t and how this an be determined at the observation

time, τ , whih is assumed to be �xed. This ontrasts with Hunt and Blake

(2015d), where we disuss how the surfae varies dynamially with τ .

In de�ning the forward mortality surfae, we assume that all longevity-

linked seurities an be onstruted from a portfolio of longevity zeros. We

shall see in Setion 3.3 that this is trivially true in the ase of longevity

swaps.

11

We extend this by assuming that the value of any other longevity-

linked seurity at time τ an be repliated as a portfolio of longevity zeros

and, therefore, written as a funtion of the νQ
x,t(τ). Hene, the forward sur-

fae of mortality an be used to give onsistent pries for all longevity-linked

liabilities and seurities.

Unfortunately, however, it is urrently impossible to reliably speify the

dynamis of short or forward mortality rates in the market-onsistent mea-

sure, sine an atively-traded market in longevity-linked seurities does not

urrently exist. Indeed, the absene of genuine market information on the

pries for any longevity-linked seurities is a ritial problem for all studies

11

It is also true for the valuation of annuities for reserving purposes, sine idiosynrati

risk is not allowed for in this ontext.

10



that seek to value the few longevity-linked seurities whih do exist. There

have been a number of di�erent methods proposed to overome this and

alibrate the market-onsistent measure. For instane, Bauer et al. (2008)

proposed using generational life tables (i.e., those whih allow mortality rates

to depend upon an individual's year of birth) in order to provide a forward

mortality surfae. However, these are updated infrequently and are not based

on market information (and when used to prie �nanial ontrats, typially

have margins for risk aversion added to them). Alternatively, Miltersen and

Persson (2005) and Bayraktar and Young (2007) have suggested using the

market for endowment assuranes for alibration purposes, sine these have

a similar prie struture to longevity zeros. Unfortunately, Norberg (2010)

showed how using seurities dependent on the idiosynrati risk of individual

lives, suh as endowment assuranes, an lead to inonsistent de�nitions of

the forward mortality rates and so this approah is not feasible.

Instead, we propose to use the historial data to model the dynamis of

the fore of mortality in the �historial� or �real-world� measure, P, using

relatively simple APC mortality models, as desribed in Setion 2.1. These

real-world dynamis of the fore of mortality an then be used to generate the

forward surfae of mortality in the real-world measure by using Equation 11.

Then, in Setion 3.1, we show how to hange from the real-world to a market-

onsistent measure, Q, using the Essher transform whih is alibrated using

whatever (limited) market information for longevity risk is available. Thus,

real-world data on historial mortality rates is used to supplement the limited

market data we have, and inreasing volumes of market information an be

inorporated into the forward mortality surfae as the market for longevity-

linked seurities develops.

2.3 Forward APC mortality models

Combining Equations 2 and 11, we de�ne forward mortality rates in the

real-world measure, P, as

νP
x,t(τ) = EP

τ exp
(

αx + β⊤

xκt + γt−x

)

(12)

We assume that the age funtions are known with ertainty at time τ and

therefore the unertainty in future mortality rates omes from the projetion

of κt andγt−x, i.e., the forward mortality surfae only allows for proess risk

11



from the projetion of the period and ohort funtions, in the terminology

of Cairns (2000), but not parameter unertainty or model risk. In the real-

world measure, we �rst obtain �tted values of κt and γy by �tting the APC

model to the historial data. We then estimate the dynamis of the time

series proesses for κt and γy from these �tted values.

If we further assume that our projeted κt and γy are normally dis-

tributed, then ηx,t is also normally distributed and onsequently µx,t follows

a log-normal distribution.

12

Therefore

νP
x,t(τ) = exp

(

αx + β⊤

xE
P
τκt +

1

2
β⊤

xVar
P
τ (κt)βx + EP

τγt−x +
1

2
VarPτ (γt−x)

)

(13)

The assumption that projeted period and ohort parameters are nor-

mally distributed is in line with the majority of studies, whih use standard

ARIMA methods to projet these parameters. If the projeted period and o-

hort parameters are not normally distributed, however, it is unlikely that the

resulting forward mortality framework would be analytially tratable. This

is beause the distribution of µx,t would not have the �nite moments required.

A number of studies have used alternative methods and distributions to make

projetions. These inlude models whih allow for regime hanges (Milidonis

et al. (2011) and Lemoine (2014)) or trend hanges (Sweeting (2011) and

Hunt and Blake (2015)) in the proesses used to projet the parameters.

Another approah has been to use other distributions for the innovations in

the time series proesses for the period or ohort funtions (suh as the t-

distribution, the variane-gamma and the normal-inverse-gamma, whih were

used to model the innovations for κt in the Lee-Carter model in Wang et al.

(2011)). In some of these ases, it may be possible to extend the forward

mortality rate framework to allow for the non-Gaussian distributions. How-

ever, we do not onsider alternative distributions for the projeted period or

ohort funtions further within this study.

12

Note that, if we were using ηx,t = logit(qx,t) in onjuntion with a binomial model for

the death ount, then qx,t would follow a �logit-normal� distribution (see Frederi and Lad

(2008)). Unfortunately, this is not analytially tratable and does not possess losed form

expressions for the expetation. Therefore, we are unable to de�ne a forward mortality

framework in the logit-link funtion / binomial death ount model as we an in the log-link

funtion / Poisson death ount model.

12



2.4 Projeting the APC model

2.4.1 Period funtions

Sine Lee and Carter (1992), the most ommon method used to projet

the period funtions in an APC mortality model has been the random walk

with drift. This was also used for the CBD model in Cairns et al. (2006a),

the period funtions in various mortality models in Cairns et al. (2011) and

Haberman and Renshaw (2011), and the �rst (dominant) period funtion in

Plat (2009).

The random walk model is attrative as it allows the period funtions to

be non-stationary with a variability that inreases with time, giving biologi-

ally reasonable

13

projetions of the fore of mortality.

In Hunt and Blake (2015f,g), we disuss how projeted mortality rates

should not depend upon the identi�ability onstraints used when �tting the

model to data, and therefore that we should use �well-identi�ed� projetion

methods whih ahieve this. In the ontext of the random walk with drift

model, this means we should projet the period funtions using

κt = µXt + κt−1 + ǫt (14)

where Xt is a set of deterministi funtions (�trends�) hosen to ensure iden-

ti�ability and µ are the orresponding �drifts�.

14

For example, the lassi

random walk with drift proess has a onstant trend, Xt = 1, with the

�drift�, µ, found be regressing ∆κt on this trend. Similarly, the random walk

with linear drift introdued in Hunt and Blake (2015g) and Hunt and Blake

(2015) has onstant and linear trends, Xt =
(

1, t
)⊤
, with the drifts found

by regressing ∆κt against Xt in a similar fashion.

13

Introdued in Cairns et al. (2006b) and de�ned as �a method of reasoning used to

establish a ausal assoiation (or relationship) between two fators that is onsistent with

existing medial knowledge�.

14

Note, we assume that the drifts µ are known at time τ and will not be re-estimated

on the basis of new information arising in the future. Therefore, the forward mortality

framework desribed in this paper and in Hunt and Blake (2015d) does not allow for

�realibration� risk as de�ned in Cairns (2013), i.e., the risk aused by the unertainty in

the drift. This risk is potentially substantial, as disussed in Li et al. (2004) and Li (2014).

However, we leave the inlusion of realibration risk to future work.

13



The random drift model in Equation 14 is solved to give

κt = κτ + µχτ,t +

t
∑

s=τ+1

ǫs (15)

where χτ,t =
∑t

s=τ+1Xs. Note that, in the simplest ase where we use a

lassi random walk with drift to projet the period funtions, Xt = 1 and

hene χτ,t = t− τ . We assume

Eτǫt = 0

Covτ (ǫt, ǫs) = ΣIt−s

where It−s is an indiator variable taking a value of unity if t = s and zero

otherwise. This means that the innovations have zero mean and are inde-

pendent aross di�erent periods, i.e., they are white noise. In addition, we

assume that the innovations are normally distributed for the reasons dis-

ussed above. From Equation 15, we �nd

EP
τ κt = κτ + µχτ,t (16)

VarPτ (κt) = (t− τ)Σ (17)

In an age/period mortality model without a ohort term, suh as the Lee-

Carter or CBD model, allowing for the unertainty in the period funtions is

su�ient in onjuntion with Equation 13, to de�ne forward mortality rates

in the real-world measure. However, more sophistiated mortality models

often inlude ohort terms, whose analysis is onsiderably more ompliated,

as we now see.

2.4.2 Cohort funtion

Most ommon tehniques for projeting the ohort funtion use standard

ARIMA proesses, whih assume that there is a lear distintion between

those ohort parameters whih are estimated from historial data, whih are

assumed to be known, and those ohort parameters whih are projeted us-

ing some time series proess. In the forward mortality rate framework, we

an see that this would lead to a sharp disontinuity in the forward mortality

surfae. For many purposes, suh as the valuation of longevity-linked seu-

rities and liabilities, suh a disontinuity is learly undesirable.

14



To illustrate this problem, onsider the ase where a (well-identi�ed)

AR(1) proess is used to projet the ohort parameters

γy − βX̃y = ρ(γy−1 − βX̃y−1) + εy

where X̃y are deterministi funtions orresponding to the unidenti�able

trends in the ohort parameters,

15

and β are the orresponding regression

oe�ients (see Hunt and Blake (2015g)). Suh a proess would be solved to

give

γy = ρy−Y (γY − βX̃Y ) + βX̃y +

y
∑

s=Y+1

ρy−sεs

for y ≥ Y , the year of birth of the last �tted ohort parameter.

16

The

variane of this proess is

VarPτ (γy) =

{

0 if y ≤ Y
1−ρ2(y−Y )

1−ρ2
σ2

if y > Y

From Equation 13, we see that this would give a disontinuity in the forward

mortality surfae at the interfae between the �tted and projeted ohort

parameters. Suh a disontinuity would give rise to priing anomalies and

therefore annot be permitted in a well-designed forward mortality frame-

work. Consequently, we must use alternative proesses to projet the ohort

parameters for use with forward mortality models.

In Hunt and Blake (2015a), we developed a Bayesian approah to over-

ome this issue. This assumes that all ohort parameters, γy, are random

variables that are not fully observed until ohort y is fully extint at time

y +X . For observation times τ < y +X, we have partial information based

on observations of the ohort to date. This information is summarised in

the estimated ohort parameters, γy(τ), found by �tting the APC mortality

model to data to time τ . From the analysis in Hunt and Blake (2015a), we

have

γy|Fτ ∼ N(M(y, τ), V (y, τ)) (18)

15

In general, these have a similar form to the deterministi funtions for the period

parameters, Xt, in Setion 2.4.1.

16

Typially, ohort parameters for the last few years of birth are not estimated due to

the lak of data, for instane, see Renshaw and Haberman (2006).
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where

Þτ−y,s ≡
s−1
∏

r=0

(1−Dτ−y+r) (19)

EP
τγy ≡ M(y, τ)

=
∞
∑

s=0

Þτ−y,sρ
s
[

Dτ−yγy(τ) + (1−Dτ−y+s)β(X̃y−s − ρX̃y−s−1)
]

(20)

VarPτ (γy) ≡ V (y, τ)

=

∞
∑

s=0

Þ

2
τ−y,s(1−Dτ−y+s)ρ

2sσ2
(21)

for y ≤ Y , where

M(y, τ) = ρy−Y
(

M(Y, τ)− βX̃Y

)

+ βX̃y (22)

V (y, τ) =
1− ρ2(y−Y )

1− ρ2
σ2 + ρ2(y−Y )V (Y, τ) (23)

for y > Y . In this,

• Dx is the proportion of a ohort assumed to still be alive by age x;

• ρ and σ2
are the autoorrelation and variane of the AR(1) proess

assumed to be driving the evolution of the ohort parameters;

• X̃y and β are the trends and drifts for the ohort parameters as de�ned

above;

17

• γy(τ) are the estimates of the ohort parameters, �tted by the mortality

model at time τ ; and

• Fτ is the total information available at time τ , inluding observations

of the ohort parameters up to year of birth y, i.e., {γυ(τ) υ ≤ y}.
17

Note that the drifts, β, depend upon the arbitrary identi�ability onstraints hosen.

In pratie, we therefore impose a set of identi�ability onstraints suh that β = 0 to

simplify matters onsiderably.
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In Hunt and Blake (2015a), it was shown that this framework allows the

historial and projeted ohort parameters to be treated onsistently, without

any sharp disontinuities in the unertainty between them. It was also shown

that these projetions are well-identi�ed, in the sense that they do not depend

upon the arbitrary identi�ability onstraints made when �tting the model. In

addition, it is shown in Hunt and Blake (2015d) that the Bayesian framework

allows us to update estimates of the ohort parameters over a one-year period

to proxy for the impat that new data would have on our parameter estimates,

whih is essential for risk management purposes. The Bayesian framework

is therefore well adapted for use in a forward mortality ontext, and we will

use it for all APC mortality models whih inlude ohort parameters.

2.5 Estimation and projetion

The framework desribed in Setions 2.3 and 2.4 is very general and an be

used in onjuntion with any APC mortality model for the fore of mortality.

To see this in pratie, we onsider estimating the forward mortality rates on

male data for the UK for the period 1950 to 2011 and ages 50 to 100 from

the Human Mortality Database (2014) for �ve di�erent APC models:

1. the Lee-Carter (�LC�) model of Lee and Carter (1992);

2. the �CBDX� model disussed in Hunt and Blake (2015f), whih extends

the Cairns-Blake-Dowd model of Cairns et al. (2006a) with a stati age

funtion and uses a log-link funtion;

3. the �lassi APC� model of Hobraft et al. (1982) and others;

4. the �redued Plat� (�RP�) model of Plat (2009) disussed in Hunt and

Blake (2015g);

18

and

5. the model produed by the �general proedure� (�GP�) in Hunt and

Blake (2015b) for the data desribed above.

18

That is, the simpli�ation of the main model disussed in Plat (2009) without the

third, high-age term or, equivalently, an extension of the CBDX model with a ohort

term.
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These models have the forms

19

ln(µx,t) = α(LC)
x + β(LC)

x κ
(LC)
t (24)

ln(µx,t) = α(CBDX)
x + κ

(CBDX,1)
t + (x− x̄)κ

(CBDX,2)
t (25)

ln(µx,t) = α(APC)
x + κ

(APC)
t + γ

(APC)
t−x (26)

ln(µx,t) = α(RP )
x + κ

(RP,1)
t + (x− x̄)κ

(RP,2)
t + γ

(RP )
t−x (27)

ln(µx,t) = α(GP )
x +

4
∑

i=1

f (GP,i)(x)κ
(GP,i)
t + γ

(GP )
t−x (28)

The parameters in these models have been estimated by �tting the model

to the UK population data desribed above. These �tted parameters have,

in turn, been used to estimate the parameters of the time series proesses

disussed in Setions 2.4.1 and 2.4.2 for κt and γy (if appliable). Using these

parameter estimates, we an alulate forward mortality rate surfaes in the

real-world measure using Equation 12.

These models have been hosen to give a reasonable ross setion of the

di�erent APC mortality models whih ould be used in pratie. One of the

advantages of the forward mortality rate framework desribed in this paper

is that it allows for onsisteny between the model of the fore of mortality

and the forward mortality surfae. Consequently, as a hek, we ompare

these forward surfaes of mortality for eah model to the mean mortality

rates alulated using Monte Carlo simulations (shown in Figure 1 for the

GP model) and �nd that the small di�erene between the two is explained

by sampling error in the simulations.

19

See Hunt and Blake (2015b) for full details of the onstrution of the GP model. For all

models, we also selet age funtions whih are normalised so that

∑

x |βx| =
∑

x |f(x)| = 1.
This involves either inluding normalisation onstants or hoosing age funtions whih are

�self-normalising� in the sense of Hunt and Blake (2015f). However, for larity, these are

not shown, although they are taken into aount in the �tting algorithms.
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EP
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 µ
65,t

Figure 1: Di�erene between forward mortality rates and those obtained

from Monte Carlo simulations using the GP model

3 Priing seurities and the market prie of

longevity risk

3.1 The market-onsistent measure

In Setion 2.4, we alulated mortality forward rates using the time series

proesses estimated from the �tted parameters. This means that the expe-

tations in Equation 13 were alulated in the historial, real-world measure,

P.

It is obviously important that longevity-linked seurities pries are on-

sistent aross di�erent types of seurity in order to limit the potential for

19



priing anomalies and arbitrage opportunities in the market. In addition,

modern solveny regimes require that liability values and tehnial provi-

sions for pension shemes and insurers must also be onsistent with market

pries. Identifying a suitable market-onsistent measure, Q, is therefore a

ritial omponent of the forward mortality framework.

The starting point of modern �nanial theory is to assume that the �-

nanial markets are �omplete� in the sense that every �nanial laim in

them an be hedged perfetly using tradable assets. In omplete markets,

the market-onsistent measure exists and is unique. Derivative seurities in

omplete markets an be perfetly repliated using these underlying seurities

without risk (and hene these measures are also referred to as �risk-neutral�)

and the osts of these hedging strategies give the derivatives their unique

pries. Complete markets are also free from arbitrage, sine all pries an

be derived using these underlying hedging strategies and any deviation from

these pries will be arbitraged away by informed investors. The assumption

of market ompleteness is a reasonable one in many ontexts, suh as devel-

oped markets for equities and interest rates in large and advaned eonomies.

However, the market for longevity risk is not omplete. Not only are there

insu�ient tradable longevity-linked seurities to fully repliate all �nanial

laims, there are almost no longevity-linked seurities being atively traded,

full stop. Therefore, de�ning a market-onsistent measure for longevity risk

is a major problem for all mortality models whih seek to prie longevity-

linked seurities.

Some studies, for instane Shrager (2006), assume a priori that any mar-

ket will be risk-neutral with respet to longevity risk and therefore that the

historial and market-onsistent measures are equal. We believe this is un-

likely, given that any market in longevity risk is likely to be dominated by

parties that su�er �nanially from rising life expetany (see Loeys et al.

(2007)) and therefore will be generally seeking to hedge the risk of future

improvements in mortality rates.

In light of this absene of information, Barrieu et al. (2012, p. 224)

suggested that the real-world measure must play a key role in the de�nition

of any market-onsistent measure:
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What will be a good priing measure for longevity? It is expeted

that the historial probability measure will play a key role, due

to the reliable data assoiated with it. Therefore, it seems nat-

ural to look for a priing probability measure equivalent to the

historial probability measure. Important fators to onsider are

that a relevant priing measure must be: robust with respet to

the statistial data, and also ompatible with the pries of the

liquid assets quoted in the market. Therefore, a relevant proba-

bility measure should make the link between the historial vision

and the market vision. One the subsets of all suh probability

measures that apture the desired information are spei�ed, a

searh an ommene for the optimal example by maximising the

likelihood or the entropi riterion.

We agree with this analysis, and use the Essher transform to de�ne a

market-onsistent measure that is equivalent to the real-world measure and

that satis�es many of these desirable properties. This transformation is rel-

atively parsimonious, with a small number of free parameters whih an be

alibrated using any market information we possess. Below, we further show

that the Essher transform gives us losed form expressions for the market-

onsistent forward mortality rates as shown below, and therefore is relatively

straightforward to implement and robust to alibrate to data.

The Essher transform has often been used in seurities priing in im-

perfet markets sine the work of Gerber and Shiu (1994). As disussed

in Kijima (2005), it is related to other widely used distortion methods for

adjusting to a risk-neutral measure, suh as the the Wang transform (devel-

oped in Wang (2000, 2002) and Cox et al. (2006), and used in Denuit et al.

(2007) for example), and the Sharpe ratio in modern �nanial theory (used

in Milevsky et al. (2005) and Loeys et al. (2007)). It is also onsistent with

priing in the real-world measure for an individual with an exponential util-

ity funtion, as disussed in Milidonis et al. (2011).

For a risk Xx,t in the P measure, the general Essher transform to the Q

measure an be de�ned by

EQXx,t =
EP [Xx,t exp(−Zx,t)]

EP exp(−Zx,t)
(29)
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where Zx,t is a random variable ontaining the parameters de�ning the market-

onsistent measure.

In the ontext of mortality forward rates, we hoose Xx,t = µx,t =
exp(ηx,t) and orrespondingly de�ne

Zx,t = λ⊤κt + λγγt−x (30)

where λ is an (N × 1) olumn vetor. Hene, there are N + 1 parameters

(whih we refer to olletively as λ(j), j ∈ {1, . . . N, γ}), whih orrespond to

the N age/period terms (in the vetor λ), and the ohort term (with single

parameter λ(γ)
) in the general APC mortality model in Equation 2. It is im-

portant to note that the values found for these parameters will depend upon

the spei�s of the underlying model, and so are not omparable between

di�erent models.

Due to the pauity of genuine market information to prie longevity risk,

one might have a natural inlination to prefer simpler models, suh as the LC

model (whih has only one free parameter for the Essher transform). Suh

models ould be felt to be more parsimonious, having fewer market pries

for longevity risk and therefore requiring fewer market pries for longevity-

linked seurities in order to alibrate the market-onsistent measure. For

example, alibrating the LC model would require only one market prie in

order to alibrate the market-onsistent measure, whilst alibrating the GP

model in Setion 2.5 requires four market pries. Using overly simple models,

however, would be a mistake whih an lead to unreasonable pries for other

longevity-linked seurities as shown in Setion 3.3.

Using the Essher transform with Equation 11 and this de�nition for Zx,t
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gives

νQ
x,t(τ) = EQ

τ µx,t

= EQ
τ exp(ηx,t)

=
EP

τ exp(−Zx,tηx,t)

EP
τ exp(−Zx,t)

=
EP

τ exp(αx + (βx − λ)⊤ κt + (1− λγ)γt−x)

EP
τ exp(−λ⊤κt − λγγt−x)

= exp

(

αx + β⊤

xE
P
τ κt +

1

2
β⊤

xVar
P
τ (κt)βx + EP

τ γt−x

+
1

2
VarPτ (γt−x)−

1

2
β⊤

xVar
P
τ (κt)λ− 1

2
λ⊤VarPτ (κt)βx − λγVarPτ (γt−x)

)

= exp
(

−β⊤

xVar
P
τ (κt)λ− λγVarPτ (γt−x)

)

νP
x,t(τ) (31)

due to the symmetry of VarPτ (κt).

This gives us losed-form expressions whih allow us to adjust the forward

mortality rates in the real-world measure to a market-onsistent measure.

The existene of losed-form expressions is why we argued that the Essher

transform neatly omplements the forward mortality framework: these re-

sults ould not have been ahieved with alternative transformations to the

market-onsistent measure. Sine we have already found expressions for

VarPτ (κt) and VarPτ (γy), transforming the forward mortality surfae in the

real-world measure into a market-onsistent measure is simply a matter of

�nding the values of free parameters of the Essher transform. This an be

done if we have su�ient pries for longevity-linked seurities, as disussed

in Setion 3.2 below.

Through the analogy with utility priing and the Sharpe ratio, we refer

to the parameters of the Essher transform as the �market pries of longevity

risk� assoiated with eah of the age/period and ohort terms. For this anal-

ogy to be reasonable, we would antiipate that the parameters, λ(j)
, should

be positive. However, this is not neessarily the ase in the forward mortality

framework, for the following reasons.

As disussed in Loeys et al. (2007), we antiipate that the marginal par-

tiipant in the market for longevity-linked seurities will be a life insurer
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seeking to hedge longevity risk. Suh a life insurer will be averse to longevity

risk, and so, we would expet the market-onsistent forward mortality rates

to be lower than those in the real-world measure

νQ
x,t(τ) ≤ νP

x,t(τ)

In order for this to be true,

exp
(

−β⊤

xVar
P
τ (κt)λ− λγVarPτ (γt−x)

)

≤ 1

⇒ β⊤

xVar
P
τ (κt)λ+ λγVarPτ (γt−x) ≥ 0

Sine VarPτ (κt) is a positive de�nite matrix and VarPτ (γy) ≥ 0, this will er-
tainly be true if λγ > 0 and the elements of λ are also positive. However,

individual market pries of longevity risk an be negative, whilst still ensuring

that hedgers pay a positive prie to transfer longevity risk overall. Sine some

market pries an be negative, the term �market pries� might be onsidered

misleading. Although we shall refer to these parameters as market pries in

this paper and in Hunt and Blake (2015d), it should be borne in mind that

they are probably best thought of as simply parameters in the Essher trans-

form in Equation 29 rather than true market pries of longevity risk based

on an expeted utility approah (suh as that disussed in Zhou et al. (2015)).

The Essher transform approah has some other pratial advantages, be-

yond the existene of losed-form expressions for the forward mortality rates.

The forward mortality surfae in the real-world measure will be updated only

infrequently, typially one every year when new mortality data is released.

However, market information will need to be updated far more frequently, es-

peially as the market for longevity-linked seurities develops. It is desirable

in pratie to be able to take the (infrequently hanging) P-measure forward

mortality surfae and make relatively simple adjustments to this to re�et

hanging market information, rather than having to re-estimate the model

ompletely every time the priing information hanges.

However, a limitation of the forward mortality framework outlined in this

study is that it is urrently unable to prie longevity-linked seurities with

optionality, for example, a all option on mortality rates. In order to do this,

the dynamis of mortality rates in the market-onsistent measure would need

to be spei�ed, in addition to simply the expetation, EQ
τ µx,t. We leave the
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extension of the forward mortality framework to the inlusion of longevity-

linked options to future work.

We also note that, looking solely at the age/period terms, Equations 16

and 17 imply

β⊤

xE
P
τκt + β⊤

xVarτ (κt)λ = β⊤

x [κτ + µχτ,t + (t− τ)Σλ]

= β⊤

x [κτ + µ̂χτ,t]

sine t − τ is always one of the deterministi funtions in χτ,t. Hene, we

see that for an age/period model suh as the LC and CBDX models, the

Essher transform to the market-onsistent measure is equivalent to making

an adjustment to the drift of the random walk in Equation 14. This approah

is developed further in Hunt and Blake (2015e). In this form, the use of the

Essher transform an be ompared with some of the other approahes that

have been suggested in previous studies. For instane, Loeys et al. (2007)

suggested that the prie of a q-forward should be alulated as

qf = (1− (t− τ)λ̃σ2)qe

where σ2
is de�ned as the annual volatility of the mortality rate, i.e., σ2 =

VarP(ln q). We an ompare this priing formula to what our forward mor-

tality framework would give were we to use the LC model as the underlying

mortality model. This has one period funtion, κt, with one assoiated mar-

ket prie of risk, λ. From Equation 31 applied to the LC model, we �nd

νQ
x,t(τ) = exp (−(t− τ)βxΣλ) ν

P
x,t(τ)

We an therefore see that the priing formula in Loeys et al. (2007) is similar

in form to Equation 31, although based on forward ontrats on probabilities

of death, qx,t, rather than the longevity-zeros whih are used as the underly-

ing seurities in this study.

Cairns et al. (2006a) adjusted the drift of the random walk used to

projet the period funtions diretly, in order to inorporate market pries

for longevity risk without reourse to the Essher transform

µQ = µP − Cλ̃
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where CC⊤ = Σ and λ is a vetor of the market pries of risk. If suh an

approah were to be used for the CBDX model in a forward mortality rates

framework suh as above, we would �nd market-onsistent forward mortality

rates

νQ
x,t(τ) = exp

(

−(t− τ)β⊤

xCλ̃
)

νP
x,t(τ)

Therefore, we see that the approah used in Cairns et al. (2006a) is equiv-

alent to that used in this study, exept using Cλ̃ instead of Σλ. Equating

these gives

Cλ̃ = Σλ

λ̃ = C⊤λ

Hene, the more rigorous forward mortality framework de�ned in this study

ahieves results whih are onsistent with those of Cairns et al. (2006a), but

is also able to justify the otherwise ad ho adjustments to the drift made in

that study.

3.2 Calibration of the market-onsistent measure

As has been mentioned previously, a major problem with forward mortality

models is the lak of market information to speify the market-onsistent

measure. An advantage of using the forward mortality framework desribed

in this study is that, rather than requiring su�ient market pries to de�ne

the full forward mortality surfae, we require only N + 1 pries to uniquely

speify the market pries of longevity risk used in the Essher transform.

This substantially redues the market information required.

However, even this simpli�ation is unlikely to be adequate at present,

given the pauity of traded longevity-linked seurities. Many of those whih

do exist, suh as the extreme mortality bonds listed in Lane (2011), are not

suitable as they involve options on mortality rates whih annot be pried

using the forward mortality framework as proposed here.

20

For illustrative

purposes, we will demonstrate how the forward mortality rate framework

ould be alibrated with respet to the sort of information whih is available

20

We extend the forward mortality framework to allow for the valuation of longevity-

linked options in Hunt and Blake (2015e).
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urrently or is likely to be available in the foreseeable future, and how this

�external� market in longevity risk ould be supplemented by use of an �in-

ternal� market for longevity risk based on the assumptions used to value and

reserve for longevity risk within a life insurer.

21

3.2.1 External market

A number of �external� markets exist for produts whih depend upon longevity,

for instane the markets for endowment assuranes and individual annuities.

These were used to provide market information for priing longevity risk in

Bayraktar and Young (2007) and Bauer et al. (2008). However, both of these

produts are sold to individuals, and therefore are subjet to idiosynrati

mortality risk as well as systemati longevity risk, whih makes them unsuit-

able for use in a forward mortality rate framework, as disussed by Norberg

(2010). Furthermore, insurers will inlude loadings for expenses and other

risks, in addition to longevity risk when priing these produts, whih makes

using them to alibrate a forward mortality model problemati.

Instead, any forward mortality model will need to be alibrated using

seurities dependent on aggregate mortality rates (preferably from national

populations) rather than those that are sold to individuals. Suh seurities

are also more likely to be traded, thereby giving informed and responsive

market pries. The problem remains, however, that there is urrently no

atively-traded market in suh seurities whih an be used to provide the

priing information required to alibrate the market-onsistent measure.

To date, probably the most ative market in longevity-linked seurities

has been that for bespoke longevity swaps (see Hunt and Blake (2015k)).

A longevity swap is an agreement between two parties to swap a series of

ash�ows - a �xed leg based on the best estimate of the survivorship of a

ohort but then inreased by a onstant perentage (the swap margin) and

a �oating leg based on the atual survivorship observed for the ohort. A

bespoke longevity swap is one whih is tailored to the harateristis of a spe-

21

In a sense, the di�erene between the external and internal markets for longevity risk

ould be ompared to the di�erene between using mark-to-market and mark-to-model

valuation methods when valuing seurities in ompany aounts, depending upon whether

deep and liquid markets exist for them.
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i� population suh as a pension sheme. As suh, bespoke longevity swaps

are unlikely to be widely traded, and at more as ustomised reinsurane

ontrats than standardised longevity-linked seurities whih ould form the

basis for a market in longevity risk. In ontrast, an index-based swap, suh

as that desribed in Dowd et al. (2006), is one where the ohort in question

is from a national population. Although index-based longevity swaps have

not yet been widely traded, the development of the bespoke longevity swap

market to date implies that, if a market in longevity risk does develop in the

near future, it is likely that index-based swaps will form a key omponent of

it.

For illustrative purposes, we therefore assume the existene of a single

index-based longevity swap, whih we believe might be typial of the sort

of seurity whih may be traded during the early stages of the development

of an external market in longevity-linked seurities. We assume that this

index-based longevity swap has been written on a standard ohort of men in

the UK aged 65 in 2011 and has a term of 35 years (i.e., until the ohort is

aged 100). The �oating leg of this swap will therefore have the value

35
∑

t=1

tP
Q
65,τ (τ)B(τ, τ + t)

i.e., the same prie as a series of the longevity zeros disussed in Setion 2.2.

The �xed-leg ash�ows will re�et a typial �best estimate� agreed between

the ontrating parties when the swap is initiated. For illustrative purposes,

we assume these ash�ows are set by alulating the survivorship of the ref-

erene ohort using the �tted mortality rates in τ = 2011 projeted using

the �CMI Projetion Model� (Continuous Mortality Investigation (2009a,b,

2013)) with a �long-term rate of improvement� assumption of 1.5% p.a..

22

We

denote the survival probabilities of the referene ohort from time τ to τ + t

using this assumption as tP̃65,τ (τ). While there is urrently no ative market

in index-based swaps, this assumption is typial of those used to de�ne the

�xed leg of bespoke longevity swaps in our experiene. These ash�ows are

then inreased by a swap premium of 4%, whih is a typial level on bespoke

22

The use of the CMI Projetion Model in this ontext is purely illustrative and should

not imply that we believe that this is the best model to use for priing longevity-linked

seurities, although it is typial of what has been used in pratie in our experiene.
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swaps in our experiene.

The prie of the swap is therefore

35
∑

t=1

(

tP
Q
65,τ (τ)− 1.04 tP̃65,τ (τ)

)

B(τ, τ + t) (32)

and will be zero at time τ . We therefore alibrate the market pries of risk

to impose this using standard numerial optimisation algorithms. In these

alulations, we assume a �at real yield of 1.0% p.a. for the zero-oupon

bond pries, B(τ, τ + t)

For models with only one soure of risk (for instane, the LC model),

this single, external prie is su�ient to speify the single market prie of

longevity risk uniquely. For more ompliated models, with multiple risk

soures, we require additional pries in order to speify the market pries of

longevity risk.

3.2.2 Internal market

We observe that, while genuine market information is in sare supply, many

insurane ompanies will e�etively have an internal market for longevity risk

due to the ross-subsidies between di�erent lines of business with di�erent

exposures to longevity risk. For instane, an insurer whih writes both annu-

ity and life assurane lines of business has, de fato, established an internal

market for longevity risk due to the presene of natural hedging between the

two lines of business, as disussed in Cox and Lin (2007). The �prie� of

longevity risk in this internal market will �nd expression in the mortality im-

provement assumptions used in the priing and reserving for these di�erent

lines of business. It is therefore natural to use these �internal� market signals

to supplement those oming from the genuine external market if there are

insu�ient traded longevity-linked seurities to de�ne the market-onsistent

measure.

Alternatively, an insurer may develop an �internal� prie for longevity risk

by analysing the ost of longevity reinsurane via bespoke longevity swaps.

Although these ontrats do not solely transfer longevity risk - they also
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transfer basis and idiosynrati risks - they ould still give some indiation of

a prie for the systemati longevity risk present, and so be used to alibrate

the market-onsistent measure.

For example, we assume that the forward mortality framework is being

used by an organisation with an internal, deterministi assumption that on-

stitutes their �house view� of mortality improvements. This house view would

then feed through into the assumptions used in priing and reserving, and

inform those assumptions that are used for aounting and regulatory pur-

poses if there is su�ient �exibility in how these are set. The existene of

suh a house view would therefore determine the organisation's appetite for

longevity risk aross multiple lines of business and so underpin the �internal�

market for longevity risk.

To illustrate the sort of internal market that might be onsidered typial,

we assume a house view that mortality rates improve in line with the proje-

tions from the CMI Projetion Model with a long-term rate of improvement

of 1.75%.

23

Again, this is in line with the sort of assumptions used to reserve

for and prie annuity business in the UK in our experiene. In order to trans-

late this house view into the market pries of longevity risk in our forward

mortality framework, we try to minimise the (weighted) relative distane be-

tween the surfae of probabilities of dying given by the internal assumption,

q̃x,t, and those given the forward mortality surfae in the Q-measure

Qx,t(τ) = 1− exp
(

−νQ
x,t(τ)

)

at ertain key ages, subjet to the swap also being pried fairly at time, τ ,

23

This value of 1.75% an be ompared with the assumption of a long-term rate of

improvement of 1.5% used for the �xed leg of the index-based longevity swap above.

The long term rate of improvement is likely to be higher on an annuity reserving basis

than for valuing a longevity swap, sine it is ommon pratie, in our experienes, for

annuity providers to inlude an impliit margin for prudene in their mortality projetion.

In ontrast, the assumption used in a longevity swap typially re�ets a best estimate of

future mortality improvements and risk is expliitly allow for via the swap premium rather

than an impliit margin in the mortality assumption.
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i.e.,

min
λ

∑

t,x∈X

B(τ, τ + t)
(q̃x,t −Qx,t)

2

q̃x,t

subjet to Equation 32 = 0

where X = {50, 55, 60, 65, 70, 75, 80}. This proedure is equivalent to deter-

mining the market-onsistent measure by referene to an external market in

q-forwards, as proposed in Coughlan et al. (2007) and disussed in Setion

3.3.2 below, if suh as market existed. We onsider these key ages partly to

ensure that the forward mortality surfae in the market-onsistent measure

is biologially reasonable over a wide age range and beause, if a market in

q-forwards does emerge, it is at these ages where the market is likely to be

most liquid (see Li and Luo (2012)). Therefore, the use of the internal market

for longevity risk is simply a proxy for information from an external market

for longevity risk, and will be supplanted should a genuine external market

develop.

We use these assumptions for the external and internal markets for longevity

risk in order to alibrate the parameters of the Essher transform for all �ve

models desribed in Setion 2.5. These parameters, along with the forward

mortality surfaes obtained in Setion 2.5, allow us to onstrut the forward

mortality surfae in the market-onsistent measure, whih an then be used

to value other longevity-linked liabilities and seurities in a market-onsistent

fashion.

3.3 Priing longevity-linked seurities

The forward mortality framework desribed above provides a single surfae

of forward mortality rates, alibrated from all the available information on

longevity-linked seurities. It an, therefore, be used to value any other

longevity-linked seurities and give pries onsistent with those observed. We

demonstrate this for a range of di�erent longevity-linked seurities below.

3.3.1 Survivor derivatives

Longevity zeros and s-forwards
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In Setion 2.2, we de�ned the forward mortality rates assuming the exis-

tene of a market in longevity zeros. These were used as they are the funda-

mental seurities dependent upon the survivorship of a ohort of individuals,

and an be used to onstrut more ompliated survivor seurities suh as

annuities and longevity swaps, as disussed below. Related to longevity zeros

are �s-forwards�, as proposed in Dowd (2003), Blake et al. (2006) and the Life

and Longevity Markets Assoiation,

24

whih are forward ontrats de�ned on

a longevity zero (and hene are more apital e�ient).

From Equation 7, we an see that

Sx,t(τ) = tP
Q
x,τ = exp

(

−
t
∑

u=1

νQ
x+u,τ+u(τ)

)

where Sx,t(τ) is the forward prie of an s-forward at time τ , de�ned on a o-

hort aged x at τ , with a maturity of t years. Figure 2 shows s-forward pries

de�ned on the ohort of individuals aged 65 in 2011 with di�erent maturities.

As an be seen, most of the models give broadly omparable s-forward

pries, espeially those alibrated using the internal market information. We

note that the LC model gives s-forward pries whih are slightly di�erent

from these models, with higher probabilities of survival over the �rst few

deades followed by a period of higher mortality rates (and hene a steeper

gradient for the urve), but these are still biologially reasonable.

Annuities

The most relevant longevity-linked instruments for many life insurane

ompanies are annuities. For the reasons disussed in Setion 3.1 and Nor-

berg (2010), individual annuities annot be used to alibrate the forward

mortality surfae in the market-onsistent measure, sine the ash�ows of

these instruments are expliitly linked to the survivorship of a named indi-

vidual and, hene, their pries inlude an allowane for individual mortality

risk. In addition, they are not traded, and, therefore, annot provide timely

information on their values. However, when a life insurer reserves for a book

24

http://www.llma.org/
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Figure 2: S-forward pries for �ve di�erent mortality models

of annuities, the idiosynrati mortality risks are diversi�able and so are not

inluded in the value of any spei� annuity but through the additional ap-

ital required for the book.

25

In addition, modern solveny regimes, suh as

Solveny II, require the best estimate of the liabilities in respet of annuity

poliies to be alulated using market-onsistent assumptions. Therefore, the

market-onsistent forward framework ould, potentially, be used as the basis

for an insurer's �internal model� under Solveny II, as disussed in EIOPA

(2014).

26

25

There will therefore be a distintion between the prie an annuity is sold to the publi

for and the amount it is reserved for by the life insurer, with the additional margin for

idiosynrati mortality risk harged to the individual forming part of the pro�t margin of

the produt.

26

This is disussed further in Hunt and Blake (2015j).
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The value of an annuity an be diretly onstruted from a portfolio of

longevity zeros using

ax(τ) =
∞
∑

t=0

tP
Q
x,τ (τ)B(τ, τ + t) (33)

To alulate the values of longevity zeros beyond the maximum age in our

data, we use the topping out proedure of Denuit and Goderniaux (2005).

We therefore see that annuity values are very losely related to the swap prie

given in Equation 32. We alulate annuity pries

27

for men at di�erent ages

in 2011 using the �ve di�erent models, and the results are shown in Figure

3.

We an see from this that the di�erent models give broadly similar an-

nuity values. This is not surprising given that they all use the same external

market information (i.e., the swap prie) in order to alibrate the market-

onsistent measure. Indeed, all the models give exatly the same value for

an annuity at age 65, sine this is determined by the swap prie we have

assumed and an annuity is equivalent to the �oating leg of a longevity swap.

However, the annuity values given by di�erent models diverge slightly as we

move away from this �xed referene point, with the LC model giving lower

annuity values at higher ages than the other models.

Index-based longevity swaps

We an also use these results to investigate the potential priing of index-

based longevity swaps at di�erent ages. Extending the de�nition of the swap

value in Equation 32 for di�erent ages to

0 =
35
∑

t=1

(

tP
Q
x,τ(τ)− (1 + π) tP̃x,τ(τ)

)

B(τ, τ + t) (34)

we an use the same �best estimate� assumption based on the CMI Proje-

tion Model for the �xed legs of the swaps, to alulate the implied swap

27

Annuities are valued using a real disount rate of 1% p.a..
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Figure 3: Annuity values for �ve di�erent mortality models

premium, π, on index-based longevity swaps at di�erent ages. The implied

swap premiums are shown in Figure 4.

As an be seen, the behaviour of the swap premium depends strongly

upon the model being used. For the lassi APC, RP and GP models, whih

inlude a ohort term, the swap premium slightly inreases with age, from

around 4% at age 65 to around 6% between ages 75 and 80 (note that a

value of 4% was assumed at age 65). Swap premiums for the CBDX model

derease slowly with age, to around 3% at age 75. However, for all of these

models, the swap premium remains positive and do not appear unreasonable

at any age.

In ontrast, the LC model gives swap premiums whih derease rapidly
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Figure 4: Swap premiums for �ve di�erent mortality models

with age, giving negative swap premiums at higher ages (i.e., a premium

would be paid to reeive the �oating payments on the swap) whih does not

appear reasonable. This is beause the LC model gives relatively low values

for annuities at higher ages - lower than would be found using the deter-

ministi CMI Projetion Model. We therefore see that there is a trade-o�.

On the one hand, we would like to use simple models whih have relatively

few free parameters and so are simple to alibrate from sparse data (and, in

partiular, would avoid the use of an internal market for longevity risk). On

the other hand, we also need to obtain plausible pries for di�erent longevity-

linked liabilities and seurities and aross a wide range of ages.
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3.3.2 Other longevity-linked seurities

A number of other longevity-derivatives not based on the survivorship of a

ohort have been proposed, and these an also be valued using the forward

mortality framework proposed here. A number of these are illustrated be-

low. However, the important point to note is that any seurity whih does

not have a non-linear payo� (i.e., whih is not an option) an be valued using

the forward mortality framework proposed in this paper.

q-forwards

Forward ontrats on future probabilities of death, known as �q-forwards�,

were introdued in Coughlan et al. (2007) and represent another, distint,

family of potential longevity-linked seurities. There have been a number of

hedging transations using q-forwards, as disussed in Blake et al. (2013),

and so q-forwards are one of the major ontenders to form the basis of a

traded market for longevity risk if it develops. In addition, the internal mar-

ket assumption, used in Setion 3.2 to alibrate all of the models other than

the LC model, impliitly makes use of a market for q-forwards, albeit one

that is internal to the life insurer rather than an externally traded market.

Values for q-forwards at age 75 and di�erent maturities, alulated using

the forward mortality models, are shown in Figure 5, along with the qx,t val-

ues projeted using the CMI Projetion Model. For the models whih used

the internal market assumption to alibrate the market-onsistent measure,

we see that the q-forward values are broadly onsistent with those from the

CMI Projetion Model. However, they are not idential, sine the alibration

proess also has to math the swap prie exatly and minimise the di�erene

in q-forward pries at ages other than 75. However, beause the GP model

has more market pries of risk to alibrate, it ahieves a slightly loser �t to

the internal market assumption than the other models, inluding the ohort

e�et observed around 2025 (i.e., for ohorts born around 1950).

In ontrast, the LC model gives q-forward values whih are very di�erent

from those of the other models, with implausibly rapid dereases in q-forward

values. Again, this is beause, with a single market prie for longevity risk,

the LC model has to severely distort the forward mortality surfae in the
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Figure 5: q-forward pries at age 75 for �ve di�erent mortality models

real-world P-measure in order to prie the longevity swap. It annot ensure

that mortality rates aross a wide range of other ages and years behave in

a plausible fashion in the market-onsistent measure. We therefore see that

more sophistiated underlying APC mortality models, as well as being able

to inorporate priing information from a wider range of soures, will also

tend to give more biologially-reasonable forward surfaes for mortality in

the market-onsistent measure.

e-forwards

Period life expetany is a very ommonly used aggregate measure of

mortality rates, sine it an be alulated easily from observed data and an

38



be ompared aross di�erent populations. It is, therefore, natural to onsider

its use as an index for longevity risk transfer, based on the suggestion of

Denuit (2009). In partiular, we onsider a market in forwards on period

life expetany, whih we refer to as �e-forwards� (from the demographi

symbol for period life expetany). Using the forward mortality framework,

we alulate forward period life expetanies as

E65,t(τ) = 0.5 +
∞
∑

u=1

exp

(

−
u
∑

v=1

νQ
65+v,t(τ)

)

Figure 6 shows the forward period life expetanies at age 65 from eah of

the �ve models in the market-onsistent measure.
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Figure 6: Period life expetanies at age 65 for �ve di�erent mortality models
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We note that all of the models give forward period life expetanies whih

an be onsidered biologially reasonable and onsistent with the �ndings of

Oeppen and Vaupel (2002), i.e., that they inrease roughly linearly. Life

expetanies from the LC model inrease slightly faster than the other mod-

els, whih otherwise give broadly onsistent forward values. This is beause

of the use of the internal market to alibrate these other models, ensuring

greater onsisteny between their forward mortality surfaes.

k-forwards

In Hunt and Blake (2015h), we disussed how the indies based on the

observed rates of improvement in mortality rates, suh as the indies whih

were de�ned in the onstrution of the Swiss Re Kortis bond, ould poten-

tially form the basis for a market in longevity risk. Improvement rates may

be a natural basis for a market in longevity, as they are often used by atu-

aries to express long term assumptions regarding the evolution of mortality

rates. Building on this, we also onsider the forward value of the index for

men in the UK de�ned by

Kt(τ) =
1

11

85
∑

x=75



1−
[

νQ
x,t(τ)

νQ
x,t−8(τ)

]
1
8





This index was onstruted to measure the average rate of improvement

in mortality rates between ages 75 and 85 for men in the UK and so ould

be used for hedging or transferring longevity risk in a portfolio of annuities.

Unlike the Kortis bond, however, we only onsider an index onstruted for

a single population (i.e., men in the UK) rather than the di�erene between

two populations, and only onsider priing the index rather than an option

on the index.

28

In Hunt and Blake (2015h) it was suggested that forward ontrats based

on this Kortis index ould form the basis of a market in longevity risk. We

refer to suh ontrats as �k-forwards� in the same manner at q-, s- and e-

forwards disussed above. Figure 7 shows the projeted k-forward values in

the market-onsistent measure. As disussed in Hunt and Blake (2015h), the

28

See Hunt and Blake (2015h) for a further disussion of the Swiss Re Kortis bond and

its onstrution.
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Figure 7: Kortis index values for �ve di�erent mortality models
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Kortis index is designed to be very sensitive to the rates of improvement in

longevity, whih are determined by the drift, µ, of the random walk used

for the period parameters. Indeed, for models whih lak a ohort term, the

drift in the random walk exatly determines the projeted index values, and

hene they are onstant beyond 2020.

29

For the models whih inlude ohort

parameters, the value of the index in the short term depends strongly upon

the ohort parameters �tted by the model, as disussed in Hunt and Blake

(2015h), resulting in a distintive urved pattern. In general, the models

ontaining a ohort term give market-onsistent assumptions for the rate of

improvement in longevity whih derease from its urrently observed level of

around 3.5% to around 2% in 20 years' time. This is not surprising given

this is broadly in line with the assumptions used to alibrate the market-

onsistent measure, i.e., the CMI Mortality Projetion Model with a long

term rate of improvement of either 1.5% or 1.75%.

As in the ase of the q-forwards, the index values for the LC model show a

very di�erent evolution due to the limited ability of this model to both prie

the market information and give a biologially reasonable forward surfae of

mortality. However, the alternative models appear to give index values whih

are biologially reasonable and onsistent with the historial, realised values

for the k-forwards, whih potentially means that forwards on the index ould

form a viable basis for a market in longevity risk.

Other longevity-linked seurities

The forward mortality surfae ould also be used to value life assurane

poliies in the same manner. In onjuntion with the results of Hunt and

Blake (2015d), the forward mortality framework ould therefore be used as a

standard model for both the valuation of a life insurer's tehnial provisions

and the assessment of longevity risk within them, in aordane with the

Solveny II regulatory regime desribed in EIOPA (2014). We desribe how

this an be aomplished in Hunt and Blake (2015j). In addition, for life

insurers writing both annuity and assurane poliies, it may be desirable to

value these onsistently in the tehnial provisions, in order to ahieve the

29

Before 2020, the Kortis index is based partly on projeted and partly on observed

mortality rates, and hene exhibits more variability than after 2020.

42



bene�ts from natural hedging disussed in Cox and Lin (2007).

Beyond the examples disussed above, the forward mortality framework

ould be used to value any longevity-linked seurity with a linear payo� in the

underlying index. Hene, although the market for longevity-linked seurities

is in the early stage of development urrently and it is unlear whih form of

seurities will ultimately ome to be traded, we believe that the framework

desribed in this paper is �exible enough to be able to prie any of them in

a manner onsistent with any other pries for longevity-linked liabilities and

seurities whih are available.

As disussed previously, one disadvantage of any forward mortality rate

framework as desribed in this study is that it annot be used to value

longevity-linked options, sine it only looks at the expeted mortality rates

in the market-onsistent measure. For example, it ould not be used di-

retly to value mortality atastrophe bonds, suh as the Swiss Re Vita bond

(disussed in Bauer and Kramer (2007)), Longevity Experiene Options (de-

sribed in Fetiveau and Jia (2014)), bespoke index-based solutions (desribed

in Mihaelson and Mulholland (2014)), a guaranteed annuity option (dis-

ussed in Pelsser (2003) and Ballotta and Haberman (2006)) or a bond sim-

ilar to the Kortis bond with the prinipal being a non-linear funtion of the

index value. At the present time, we do not think that this is a fatal limita-

tion of the forward mortality rate framework disussed here, as urrently the

market for longevity-linked seurities is not su�iently developed to allow a

full alibration of the forward mortality rate surfae, let alone the dynamis

of the fore of mortality in the market-onsistent measure, whih is required

to model longevity-linked options. We extend the forward mortality frame-

work developed here to be able to value longevity-linked options in Hunt and

Blake (2015e).

4 Conlusion

The valuation of longevity-linked liabilities and seurities requires us to pre-

dit future rates of mortality. Modern solveny regulations and the gradual

emergene of a market in longevity-linked seurities require these preditions

to inorporate market information, in order to give pries for di�erent seu-

rities whih are onsistent with those observed in the marketplae. As many
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previous studies have shown, forward mortality models are ideally plaed to

ahieve this.

We therefore believe that the answer to the titular question raised in

Norberg (2010) - are forward mortality rates the way forward? - is yes. Nev-

ertheless, it is important to take on board the ritiisms of Norberg (2010)

and to develop a framework spei�ally to model mortality rates, rather than

borrow a pre-existing framework developed for interest rates and to de�ne

this framework using seurities whih do not depend on the idiosynrati

timing of individual deaths. This is beause, with a properly developed

framework, we an derive a model whih is apable of apturing the omplex

dynamis of mortality rates, and so obtain onsisteny between models of

the fore of mortality and the forward mortality rates.

In this study, we have developed suh a framework for forward mortal-

ity rates whih is based upon the dynamis of the fore of mortality given

by the lass of age/period/ohort mortality models. This framework has the

advantage of being easier to estimate from historial data than existing mod-

els, with market information being inorporated via a relatively parsimonious

transformation of the forward mortality rates in the real-world measure. The

framework is also very �exible, as it an be used in onjuntion with many

of the most popular models of the fore of mortality, suh as those proposed

in Lee and Carter (1992) and Cairns et al. (2006a).

We have shown how market information an be inorporated into the

model and used the resulting forward mortality surfae to value a range of

existing and proposed longevity-linked seurities. All of the pries alulated

from the same model are onsistent with eah other, as they are derived from

the same forward surfae of mortality. This allows for a uni�ed approah to

the valuation of a wide range of liabilities and longevity-linked seurities.

Finally, we note that the main virtue of forward mortality models is their

ability to speify the dynamis of the forward mortality surfae and, hene,

their appliability to the assessment and management of longevity risk. We

develop these themes in the seond part of this study, in Hunt and Blake

(2015d). Together, these two studies show that the framework proposed an

provide an integrated solution to many of the valuation and risk manage-

ment problems in respet of longevity risk that are faed by life insurane
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ompanies.

A Identi�ability and mortality forward rates

In Hunt and Blake (2015f) and Hunt and Blake (2015g), we disuss the identi-

�ability issues in AP and APC mortality models, respetively. In partiular,

we �nd that almost all APC mortality models possess �invariant� transfor-

mations, i.e., transformations of the parameters of the model whih leave the

�tted mortality rates unhanged. In order to �nd a unique set of parame-

ters, we impose a set of identi�ability onstraints on them. Typially, these

are hosen to give a partiular demographi signi�ane to eah term in the

model. However, sine any interpretation of demographi signi�ane is sub-

jetive, it is important that our hoie of identi�ability onstraints does not

have any impat on any onlusions we draw about historial or projeted

mortality rates. For instane, we disuss in Hunt and Blake (2015f,g) how

to ensure that projeted fore of mortality is independent of the hoie of

identi�ability onstraint.

It is also important that the forward mortality rate framework desribed

in this study is independent of the hoie of identi�ability onstraints used

when �tting the underlying APC model to historial data. However, due to

our de�nitions of the forward mortality rates in Equation 11, we see that

νP
x,t(τ) in the real-world measure is automatially independent of the iden-

ti�ability onstraints if the distribution of µx,τ is also independent of the

identi�ability onstraints. We therefore do not need to do any additional

work to ensure identi�ability in the forward rates one the methods used to

projet the fore of mortality are well-identi�ed.

We also need to ensure that the forward mortality surfae in the market-

onsistent measure is also independent of the hoie of arbitrary identi�abil-

ity onstraints. This is mostly straightforward, as we see that Equation 31

depends upon the forward mortality rates in the real-world measure (whih

should be independent of the identi�ability onstraints for the reasons dis-

ussed above), the varianes of the period and ohort funtions (whih are

independent of the alloation of any levels and linear trends if the proje-

tion methods are well-identi�ed, as disussed in Hunt and Blake (2015g))
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and the market pries of longevity risk. However, we note that if the model

transformed using

{β̂x, κ̂t} = {
(

A−1
)⊤

βx, Aκt}

then the market pries of risk are also transformed in the model to λ̂ =
(A−1)

⊤
λ. Hene we see that, not only are the values of the market pries of

risk dependent upon the underlying APC model used for the fore of mortal-

ity, they will also depend upon the normalisation sheme and spei�ation

of the age funtion in the model, and so are not the same aross all models

whih give the same �tted mortality rates.

B Impat of Jensen's inequality

In Setion 2.2, it was argued that

tPx,τ = Eτ

[

exp

(

−
t
∑

u=1

µx+u,τ+u

)]

≈ exp

(

−
t
∑

u=1

Eτµx+u,τ+u

)

(35)

due to the relatively low degree of variability in µx,t, and hene it was shown

in Setion 2.2 that

νx,t(τ) ≈ Eτµx,t

This assumption an be tested numerially, as follows.

For simpliity, we onsider Px,t = Eτ exp(−µx,t). Therefore

Px,t = Eτ exp (− exp (ηx,t))

In Setion 2.3, we assume that

ηx,t ∼ N(Mx,t,Vx,t)

and therefore

Eτ exp(−µx,t) ≈ exp (−Eτµx,t) = exp (− exp (Mx,t + 0.5Vx,t)) (36)
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Holland and Ahsanullah (1989) disussed the log-log distribution, where

X is suh that

ln(− ln(X)) ∼ N(M,V)

We therefore see that Px,τ (τ) is given by the mean of the log-log distribution

if ηx,t is normally distributed. However, the moments of this distribution do

not have a losed form solution. Holland and Ahsanullah (1989) showed that

the rth raw moment of the distribution is given by

EXr =
1√
2π

∫

∞

−∞

exp
(

−0.5x2 − r exp[M+ x
√
V]
)

dx

whih an be omputed numerially.

From Setion 2.3, we see

Mx,t = αx + β⊤

xEτκt + Eτγt−x

Vx,t = β⊤

xVarτ (κt)βx + Varτ (γt−x)

Hene we an use the results of Holland and Ahsanullah (1989) to om-

pute Px,t numerially, without reourse to the approximation in Equation 36.

Using this, we alulate

Px,t = Eτ exp(−µx,t)

=
1√
2π

∫

∞

−∞

exp
(

−0.5z2 − exp[Mx,t + x
√

Vx,t]
)

dz (37)

numerially and ompare it with the values assumed in Equation 36. This

gives us a hek on the auray of the approximation in Equation 36, whih

underpins the forward mortality framework.

Figure 8 shows the ratio of the numerial value of Px,t alulated using

Equation 37 and the approximate value alulated using Equation 36 for the

�ve mortality models onsidered in this paper (in the real-world measure).

We an that in the vast majority of ases, the di�erene that the assumption

makes is less than 0.2% (i.e., ratios less than 1.002) and for no ages and

years does the approximation make more than a 1.5% di�erene to the for-

ward mortality rates. This is onsistent with the projeted mortality rates
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found in Figure 1, whih also showed that forward mortality rates (using

the approximation) were very lose to those alulated using Monte Carlo

simulations.

The mortality rates whih are most a�eted by the approximation are

those at the highest ages and the years of projetion furthest into the future,

whih makes sense as these are the mortality rates with the greatest levels of

unertainty attahed to them. However, they are also the least eonomially

important, sine any ash�ows that would be a�eted by these mortality

rates would be in respet of individuals who are very old (and so there is

very little survivorship to these ages) and far into the future (whih means

that the present value of the a�eted ash�ows would be very small due to

disounting). This gives us reassurane that the approximation in Equation

35 does not systematially distort the results found using the forward mor-

tality framework derived in this paper, ompared with those whih ould be

found using an exat but onsiderably more ompliated framework whih

does not make this assumption.
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