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This paper investigates the process determining mutual funds’ conditional probability of
closure, i.e., their hazard function. Using a nonparametric approach to estimate the effects
of a fund’s age on its hazard rate, we find a distinctly non-linear, inverse U-shaped pattern
in the relationship. Hence, young and very old funds are least likely to be closed down. A

Ž .fund’s relative performance and less significantly the level of return in the sector in which
the fund operates are also identified as important factors in the closure decision. Results
from semiparametric Cox regressions are compared with those from the discrete choice

wprobit model used by Brown and Goetzmann Brown, S.J., Goetzmann, W., 1995. Perfor-
xmance persistence, Journal of Finance. Vol. 50, pp. 679–698 . Finally, we provide a

complete summary of the fund attrition process by estimating the survivor function,
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1. Introduction

Using a large panel of mutual funds, this paper identifies and quantifies the
significance of a range of factors influencing the process governing the rate at
which funds are terminated. We have access to a new data set containing monthly

Žreturn records on an almost complete sample of the unit trusts open-ended mutual
.funds that were operating in the UK during the period 1972–1995. The sample is

Ž .unique both in terms of its length spanning 23 years or 281 months and in terms
Ž .of the number of dead and surviving funds included 973 and 1402, respectively .

The sample is long enough for us to measure the complete history of a large
number of funds and so enables us to address a range of issues that have not
previously been analyzed, such as the duration dependence of fund closures, as
indicated by the shape of the mutual fund hazard function, hazard rate dependence
on common and fund specific factors, and the fund survivor function.

Investigating the process governing mutual fund attrition rates is important for a
number of reasons. Recent studies of mutual fund performance have found a
sizeable survivorship bias associated with the underperformance of funds that have
been closed. 1 A better understanding of mutual fund performance thus requires a
thorough analysis of the factors determining the size and nature of survivorship
bias. The average lifetime of a fund and the relationship between a fund’s
abnormal performance and its probability of being closed affects the size of the
survivorship bias, and we shed new light on both these factors. Fund attrition is
also likely to affect the estimated persistence of mutual fund performance to the
extent that the funds that are closed down are also the ones that display the poorest
historical track record. Second, measuring the duration profile of mutual funds is
important for understanding the incentives under which fund managers operate.
Fund management groups appear to have an incentive to close down poorly
performing funds which otherwise reduce the average performance of the funds in
their stable. If these funds are generally closed down after only a very short
period, then fund managers can be expected to be under significant pressure to
perform in the short run. This might give the fund managers a strong incentive to
follow ‘short-termist’ investment strategies. 2 Third, assuming that funds are most
likely to close down as a result of loss of investor interest arising from poor
performance, the termination process might also be informative of the strategies
pursued by investors. For example, if persistent relative underperformance does
not strongly affect the likelihood of closure, a case could be made that investors do
not pursue rational strategies. Finally, the time it takes to close down funds also

1 Ž . Ž . Ž .See, e.g., Grinblatt and Titman 1989 , Brown and Goetzmann 1995 , Malkiel 1995 and Gruber
Ž .1996 .

2 Ž .Brown et al. 1996 argue that the practice in the US portfolio management industry of rewarding
fund managers based on their annual relative performance generates a short-term perspective in the
managers’ objective function.
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sheds light on the information extraction process that investors are confronted with
when attempting to determine a fund’s performance. If poorly performing funds
tend to close down after only a short period, this suggests that investors possess
good information about the fund performance, whereas a longer average time
before closure might indicate that performance signals are weak, so that investors
need more time before they can identify a fund’s genuine performance.

The investigation of mutual fund attrition processes is a fairly recent phe-
Ž .nomenon. Brown and Goetzmann 1995 examine a sample of US equity mutual

funds by estimating a probit function for the event that a fund dies. We model
nonparametrically the impact of fund age on the hazard rate and discover an
interesting inverse U-shaped pattern to this relationship: young and very old funds
seem to have a lower risk of closure. This result differs from the parametric

Ž .approach used by Brown and Goetzmann 1995 which models the probability of a
fund’s closure as a linear function of the fund’s age. There is nevertheless a close
relationship between the two approaches: when we estimate a discrete choice
model with a piecewise linear effect of fund age on the hazard rate, we can
recover the inverse U-shaped pattern from the Cox regression model and the
estimated coefficients on the covariates converge to their values from the Cox
regression model as the number of age dummies increases.

A more complete picture of the fund attrition process is provided by our
analysis of the survivor function which measures the proportion of funds dying as
a function of age. Mutual funds have a relatively long average lifetime and precise
estimation of the hazard function requires a data sample as long as ours.

The paper proceeds as follows. Section 2 describes the data set. Sections 3 and
4 analyze the proportional hazard and discrete choice models. Section 5 summa-
rizes the estimated survivor function, while Section 6 analyses the relationship
between fund attrition and persistence of performance. Section 7 concludes.

2. Description of the data

Our data set consists of monthly return records on a sample of unit trusts that
were in existence in the UK at some time during the period February 1972–June
1995, a total of 281 months. In the UK, unit trusts allow individuals and
companies to buy an easily realizable stake in a diversified portfolio of marketable
securities that is managed by a professional fund management group. Monthly
returns on these funds are calculated using bid prices and net income and hence,
do not include transaction costs or management fees. The data set, which was
provided by Micropal, contains the return records of 973 funds that died 3 before

3 A fund’s death refers to the event that the fund ceases to exist in its previous form. Hence, a fund
can die either as a result of a name change, a merger with another fund, or a wind up.
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Table 1
Ž .Births and deaths of funds 1972–1995

Year Funds born Birth rate Funds dying Death rate Funds alive
Ž . Ž .during year % during year % at end of year

-1972 46 46
a1972 35 76.1 NA NA 81

1973 169 208.6 NA NA 250
1974 40 16.0 NA NA 290
1975 41 14.1 NA NA 331
1976 47 14.2 NA NA 378
1977 35 9.3 2 0.5 411
1978 33 8.0 10 2.4 434
1979 52 12.0 9 2.1 477
1980 55 11.5 17 3.6 515
1981 75 14.6 24 4.7 566
1982 62 11.0 29 5.1 599
1983 103 17.2 18 3.0 684
1984 138 20.2 24 3.5 798
1985 174 21.8 21 2.6 951
1986 176 18.5 21 2.2 1106
1987 205 18.5 48 4.3 1263
1988 163 12.9 57 4.5 1369
1989 165 12.1 75 5.5 1459
1990 139 9.5 91 6.2 1507
1991 71 4.7 130 8.6 1448
1992 98 6.8 90 6.2 1456
1993 118 8.1 118 8.1 1456
1994 87 6.0 109 7.5 1434

b1995 48 3.3 80 5.6 1402

The birth and death rates were computed as the number of funds that were born or died during a
particular calendar year divided by the number of funds in existence at the end of the previous calendar
year.
a Data for 1972 excludes January.
b Data for 1995 includes January to June.

the end of the sample and 1402 funds that survived until the end of the sample. 4

According to Micropal, the data set is an almost complete record of all authorized
unit trusts that were in existence during the sample period under investigation.

Table 1 provides some descriptive statistics for the total number of fund births
and deaths during the calendar years spanned by the sample period. A large
number of funds started up in 1973 and also during the mid-to-late-eighties on the

Ž .back of stock market booms column 2 . Since the number of funds in existence
has increased over time, a more suitable measure of industry activity is provided
by the fund birth rate, calculated as the number of funds born during a given

4 We do not, however, have data on other fund attributes such as size or management fee.
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Table 2
Sectorial composition of the data set by survivorship status

Sectoral Surviving funds Non-surviving funds

UK equity growth 144 95
UK equity general 111 61
UK equity income 111 112
UK smaller companies 74 30
UK gilt and fixed interest 53 52
UK balanced 58 18
Financial and property 11 15
Investment trust units 13 8
Commodity and energy 13 48
International equity growth 74 80
International equity income 9 19
International fixed interest 37 4
International balanced 36 21
Fund of funds 68 18
North America 127 92
Europe 121 74
Japan 88 22
Far East including Japan 39 28
Far East excluding Japan 70 12
Australasia 4 21

For each sector, columns two and three give the number of surviving and non-surviving funds
contained in the sample.

calendar year divided by the number of funds in existence at the end of the
Ž .previous calendar year, shown in the last column of the table see column 3 . The

extremely high birth rates at the beginning of the sample can be attributed to the
small number of funds in existence at that time. While mutual funds have been
around since the 1930s, the industry did not really take off until the 1970s.
Subsequently, the birth rate stabilized. There are some significant variations,
however: at a level close to 20% per year, birth rates were high during the bull
markets of the mid-eighties but then fell to around 12% after the October 1987
stock market crash, and to a level well below 10% during the early 1990s. 5

Our data set contains records on dead funds from 1977 onwards. The death
rate, reported in column 5, is calculated as the number of funds that died during a
given calendar year divided by the total number of funds in existence at the end of
the previous calendar year. Death rates appear to be inversely correlated with birth
rates, being low in the early seventies and early-to-mid-eighties only to increase

5 There are strong similarities in the evolutions of the mutual fund industries in the UK and the US.
High growth rates in the number of US equity mutual funds during the mid-eighties were also reported

Ž .by Brown and Goetzmann 1995 .
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systematically after the October 1987 crash. Authorized unit trusts are allocated to
one of 20 sectors specified by the Association of Unit Trusts and Investment

Ž .Funds AUTIF and shown in Table 2. To be allocated to a particular sector, a
trust must have at least 80% of its assets invested in that sector. 6

For each sector, Table 2 shows the number of funds that survived until the end
Ž . Ž .of the sample column 2 or died within the sample column 3 . There are large

numbers of funds in the domestic equity sector which has been split into the
subcategories of growth, general, income, and smaller company funds. Likewise,
there are many funds in international equity sectors such as international equity
growth, North America, Europe, Japan and the Far East. In contrast, there are few
funds in some of the more specialized sectors such as Australasia or investment
trust units.

3. Hazard functions and durations

Fig. 1 presents a histogram of the age distribution of the 973 funds that died
during the sample. Two funds died within the same month they were launched,
and a total of 21 funds died within 6 months of inception. More than 70% of funds
that died did so within a period of 3 to 15 years after launch. Because of the
inevitable right-censoring of our sample, which ends in June 1995, these numbers
are difficult to interpret, particularly at the long end of the distribution where
censoring effects will be strongest. Nevertheless, the figure suggests that most
funds are not closed down shortly after their inception. Fund management groups
appear to give their new funds quite some time to establish track records before
deciding on their future.

3.1. Nonparametric estimation of the hazard function

To analyze the duration of the funds included in our sample and in order to
account formally for the right-censoring of the data, we utilized methods from the

Ž Ž .literature on economic duration data see, e.g., Kalbfleisch and Prentice 1980 ,
Ž . Ž . Ž .Kiefer 1988 , Pudney 1989 , Lancaster 1990 , and, in particular, Han and
Ž . Ž . .Hausman 1990 and Tunali and Pritchett 1997 on Cox regressions . Let T be a

random variable measuring the duration or age of a particular fund with a
Ž . Ž . Ž . Ž .probability distribution F t sPr T- t and a density function f t sd F t rd t.

We will also be interested in estimating the survivor function, the probability that
Ž . Ž .a fund has survived beyond a certain time horizon, defined as S t s1yF t s

6 There are other conditions. For example, an income trust must invest in securities with yields
exceeding 110% of the yield on the relevant index, while an equity trust can also have some of its
portfolio invested in government bonds.
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Fig. 1. The histogram shows the age distribution for the 973 funds that died during the course of the
Ž .sample 1972–1995 . The figures on the horizontal axis are the midpoints of the corresponding column.

Ž .Pr TG t . Our duration data can be characterized in terms of the hazard function,
that is, the conditional probability that the fund dies in a short time interval
following period t, given that it survived up to period t:

l t s f t rS t . 1Ž . Ž . Ž . Ž .
Hypotheses concerning the probability that a fund is terminated as a function of

the fund’s age are naturally expressed in terms of the shape of this hazard
function.

Initially, we estimated the hazard and survivor functions nonparametrically
Ž .using the Kaplan–Meier product–limit estimator, which accounts for the right-

censoring of the data set. Let t ,t , . . . ,t , . . . ,t denote either death or censoring1 2 i n

times of the n funds in our sample. Suppose we order the discrete death times as
t - t - , . . . ,- t , and let h be the number of funds that died after tŽ1. Ž2. Ž r . j Ž j.
months, while m is the number of funds censored between months t and t .j Ž j. Ž jq1.

tŽ r . Ž .If n sÝ m qh , then the nonparametric Kaplan–Meier estimator for thej i G t i iŽ j.
Ž .funds’ hazard rate per unit of time month is given by

hj
l̂ t s , 2Ž . Ž .

t nj j

Ž .for t F t- t , where t s t y t . Eq. 2 provides an unconditionalŽ j. Ž jq1. j Ž jq1. Ž j.
Ž . Žestimate of the funds’ hazard rate at time t . A smoothed plot of Eq. 2 with aŽ j.
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Fig. 2. This figure shows the smoothed hazard function for the UK equities total sector based on the
Kaplan–Meier estimates. The 95% confidence interval for the smoothing spline was calculated from
jackknife residuals.

. 795% jackknife confidence interval in the case of UK equity funds is presented
in Fig. 2. 8 We use this set of funds as a basis for verifying that our findings are
comparable with the results in subsequent sections, as well as with the vast
literature on the performance of equity funds.

The hazard rate increases between months 1 and 80, peaks after 8 years or so
and decreases gradually thereafter, most rapidly after 15 years. Thus, the hazard

Ž .rate is smallest for young and very old funds above 15 years and it is reasonably
well approximated by an inverse U-shaped function. At its peak, the hazard rate is
around 0.5% per month or 6% annualized.

7 A common problem when using standardized residuals to construct confidence intervals is their
sensitivity to outliers. Jackknife residuals calculate the ith residual from the model fitted without
observation i and hence provide a more robust method for computing standardized residuals.

8 ˆŽ .The estimated hazard function, l t , displays a high degree of monthly variability around a
pronounced inverse U-shape. This variability is a common finding for discrete data such as ours and
reflects the relatively small number of duration spells ending after a given number of months. To aid
the visual interpretation of the data, we used a cubic spline to smooth the point estimates of the hazard
function.
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3.2. Semiparametric estimation of the hazard function

As noted in Section 2, the birth and death processes of individual funds do not
appear to be independently distributed across funds. In particular, the death
process appears to depend on the past level of returns within a given sector, high
past returns seemingly associated with fewer deaths. Likewise, if, as has been
found in a number of studies, 9 investors re-allocate money away from the poorest
performing funds, it seems plausible that a fund’s abnormal returns should
influence the decision to close down the fund. To account for such effects we
allow the fund hazard rate at a particular point in time to depend on the realization

Ž .of a set of common and fund-specific time-varying covariates, with x ti j

denoting the ith fund’s jth covariate at time t.
We do not have any strong a priori reasons for imposing a particular functional

form for the dependence of a fund’s hazard rate on its age, and thus prefer to
model this particular relationship nonparametrically. In contrast, the effects on the
hazard rate of the time-varying covariates are modelled parametrically and the
specification is checked against a variety of residual tests reported in the appendix.
This leads to the semiparametric Cox regression model:

l t sl t exp bX x t , 3Ž . Ž . Ž . Ž .Ž .i 0 i

where we have represented the ith fund’s covariates by the column vector
Ž . Ž Ž . Ž ..X Ž .x t s x t , . . . , x t . Cox 1972 showed that the two components of Eq.i i1 i p

Ž .3 can be estimated separately in a two-step procedure where, first, b is estimated
Ž .by maximum likelihood, and, second, the baseline hazard function, l t is0

estimated nonparametrically.
As a first step in the analysis, we transformed the sample data from calendar

time to age of fund. For example, for a fund born in January 1983, we count this
month as month 1, February 1983 will be month 2, etc. The funds are now aligned
according to their age, so we can identify separately the effects on a fund’s hazard
rate of the time-varying covariates and the fund’s age. Hence, we can determine
the impact on the hazard rate of, say, a 5% underperformance by a 10-year-old
fund. 10

Suppose that data are available on n funds, among which there are r distinct
death times and nyr right-censored survival times. Also, assume that all funds
have distinct termination and censoring times as would be the case if the processes
were measured on a continuous scale. This assumption amounts to ruling out ties
in the death and censoring processes. Recalling that t denotes the jth orderedŽ j.

9 Ž . Ž . Ž .See, e.g., Berkowitz and Kotowitz 1993 , Brown and Goetzmann 1995 and Gruber 1996 .
10 Ž . Ž Ž ..Although Eq. 3 implies that a certain level of underperformance as measured by x t has thei

same proportional effect on funds irrespective of their age, the effect on the absolute level of the hazard
Ž .rate will vary. If, say, l t is highest for 5–10-year-old funds, then a given underperformance will0

increase the hazard rate the most for these funds.
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Ž .death time, let RR t denote the risk set at time t , i.e., the set of all funds thatŽ j. Ž j.
are alive and uncensored just prior to t . The basic components of the likelihoodŽ j.

Ž .function, LL b , are terms of the form

Pr fund with covariates x t dies at t l t� 4Ž . Ž .i Ž j. Ž j. i Ž j.
s . 4Ž .

Pr one death at t Ý l t� 4 Ž .Ž j. l g RRŽ t . l Ž j.Ž j.

Ž . Ž .Because of the proportionality of l t and l t , the baseline hazard willi Ž j. 0 Ž j.
Ž .cancel out in this expression and Kalbfleisch and Prentice 1980 showed that the

Ž . 11relevant ‘likelihood function’ for Eq. 3 is given by

r Xexp b x tŽ .Ž .j jŽ .
LL b s . 5Ž . Ž .Ł XÝ exp b x tŽ .js1 Ž .l g RRŽ t . l jŽ .Ž j.

Ž .The summation in the denominator of Eq. 5 is over all funds that are still alive
and hence, included in the risk set at time t . 12 Using a censoring indicator, d ,Ž j. i

which equals zero if the ith fund is right-censored, and unity otherwise, we can
write the log-likelihood function as follows: 13

n
X Xlog LL b s d b x t y log exp b x t . 6Ž . Ž . Ž . Ž .Ž .Ý Ýi i i l i½ 5

is1 lgRR tŽ .i

Maximum likelihood estimates of b can be found by numerical methods.
The assumption of no ties is not, in practice, satisfied, since our sample only

measures the month in which a fund is terminated. To account for ties, the above
set-up needs to be slightly modified. Suppose that there are d deaths at time tj Ž j.
and define a vector of sums of the covariates relating to the funds that die at time
t :Ž j.

d d dj j j

s t s x t , x t , . . . , x t , 7Ž .Ž . Ž . Ž . Ž .Ý Ý ÝŽ j. k1 j k 2 j k p jŽ . Ž . Ž .ž /ks1 ks1 ks1

11 Since this likelihood function does not use all information on the actual censored and uncensored
Ž .survival times, it is not a true likelihood function. Cox 1975 called it a partial likelihood function

and, like a marginal likelihood, its purpose is to allow inference in the presence of nuisance parameters
Ž .in this case, the parameters determining the shape of the baseline hazard .

12 Ž .Notice that the product in Eq. 5 is taken over the funds with recorded death times. While
censored survival times do not contribute to the numerator of the likelihood function, they enter
through the summation over the risk sets at death times that occur before a censoring time.

13 Recall that t denotes the death or censoring time of the ith fund, whereas we defined t as thei Ž j.
jth ordered death time.
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Ž .where x t is the value of the k th fund’s hth covariate, for some k belongingk h Ž j.
to the set of d funds that die on the jth termination date. Using these sums,j

Ž . Ž . 14Breslow 1974 proposes the following approximation to the likelihood 5 :
r

X Xlog LL b s b s t yd log exp b x t . 8Ž . Ž .Ž . Ž .Ž .Ý Ýj j l jŽ . Ž .½ 5
js1 Ž .lgRR tŽ j.

Ž .A nonparametric estimate of the baseline hazard at t , l t , is then givenŽ j. 0 Ž j.
Ž .by cf. Kalbfleisch and Prentice, 1973

ˆ ˆl t s1yj , 9Ž .Ž .0 Ž j. j

ˆwhere j is the solution to the equationj

ˆ Xexp b x tŽ .ž /l jŽ . Xˆs exp b x t 10Ž .Ž .Ý ÝX ž /l jŽ .ˆexp b x tŽ .Ž .l jŽ .ˆ1yjŽ . Ž .lgDD t lgRR tjŽ j. Ž j.

ˆŽ .and DD t indexes the set of funds dying at time t . b is the maximumŽ j. Ž j.
likelihood estimate obtained in the previous step.

3.3. Empirical results

There are many reasons why mutual funds are terminated. One is that a fund is
launched, but never reaches a critical mass in terms of market capitalization and is
subsequently closed down. Another is related to rationalization within the fund
management group: a new manager might decide that the group has two funds
with too similar objectives and so decides to merge the poorer performing fund
into the more successful fund. A different explanation, but with similar effect, is
takeover and merger activity within the unit trust industry: this can result in
duplication of funds with similar objectives and, again, a poorer performing fund
is likely to be merged into a more successful one. As a final reason, the manager
might decide to close down the poorest performing funds in order to raise the
average performance of the group as a whole. While there is a wide range of
reasons for funds closing, they all appear to be related to fund performance. 15 For
this reason, we attempt to explain fund deaths principally in terms of previous
return performance.

The covariates used in the analysis were constructed as follows. As a measure
of the level of returns within a sector, we simply used the past average return on
the funds that were in existence during the included months. Many of the existing
sectors simply do not have any good alternative indices measuring the overall
performance of the sector, and the purpose of our calculation is to isolate a
common component in a sector’s returns. Evidence cited in Section 2 suggests

14 Ž .We also examined the approximation due to Efron 1977 . The two approximations gave almost
identical results so we report only the computationally less demanding Breslow approximation.

15 Even in the case of a new fund that does not reach critical mass and is closed down, the main
explanation for this is likely to be disappointing initial performance.
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that, within a given sector, fund birth and death rates depend on past returns in the
sector, so it is important to account for this common component in the hazard
specification – otherwise, the residuals used in the analysis would no longer be
independent and the resulting likelihood function would be misspecified. To
construct a measure of a fund’s relative performance, we used a simple peer-group
adjustment, deducting from a fund’s past average return the average market return
over the same period. Using a sample of Canadian funds, Berkowitz and Kotowitz
Ž .1993 found that a fund’s market share only responds relatively slowly to
previous performance with weights on past performance that increase up to a
3-year-lag. Following this work, and in order to get a sense of the investment
horizon adopted by investors to assess fund performance, we report results
separately for 12- and 36-month horizons. 16

Comparisons between a given fund’s returns and the average return within the
Ž .fund’s sector were also made by Brown and Goetzmann 1995 and can be

Ž .justified by recent studies e.g., Brown et al., 1996; Chevalier and Ellison, 1997
which point to the importance in the assessment of fund managers’ skills of their
relative performance against a peer-group index. To illustrate, managers of
commodity and energy stocks are far more likely to be judged against their peers
than against some overall market index, on the grounds that fund managers from
this sector face similar sets of objectives and constraints. Such peer-group
comparisons are particularly important for our data set since the sectors have
formal restrictions on their choice of assets as described in Section 2.

Table 3 reports the estimation results by sector. In 19 out of 20 sectors, a
negative performance by a fund relative to its peer-group is associated with a
higher hazard rate. Of these sector estimates, eight were statistically significant at
the 5% level when performance was judged over the previous year, while 11
estimates were significant based on relative performance over the previous 3 years.
The coefficients on lagged relative performance also tend to be largest over the
3-year performance measurement period, indicating that a fund’s performance over
the relatively long-term matters the most for its subsequent survival. There is also
a large dispersion in estimated values across sectors ranging from y1.52 to 0.07
at the 12-month horizon. Perhaps this is not a surprising finding since many
sectors have both relatively few funds and hence imprecisely determined coeffi-
cients.

There was also a negative coefficient on the sector return in 13 out of 20
sectors at the 12-month evaluation horizon and in 15 out of 20 sectors at the
36-month horizon. In line with the observations in Section 2, the UK equity

16 We report results separately for these periods rather than including several lags of performance
over, say, the previous 12, 24, and 36 months in a single regression. This is because our sample is not a

Ž .balanced panel since certain funds close before building up a sufficiently long track record , so we
cannot always compute past returns at several lag lengths. If a fund closes prior to building up, say, a
36-month track record, we simply use the mean performance during the fund’s lifetime.
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Table 3
Estimated effects of the covariates on the hazard rates: Cox semiparametric regressions

Sector Performance measured over preceding 12 months Performance measured over preceding 36 months

Abnormal return Market return Abnormal return Market return

Ž . Ž . Ž . Ž .UK equity growth I0.649 y5.500 I0.215 y3.071 I0.984 y6.390 I0.234 y2.108
Ž . Ž . Ž . Ž .UK equity general I0.975 y5.669 y0.038 y0.427 I1.247 y5.567 0.116 0.753
Ž . Ž . Ž . Ž .UK equity income I0.498 y4.049 I0.152 y2.375 I0.547 y3.218 I0.193 y2.218
Ž . Ž . Ž . Ž .UK smaller companies y0.139 y1.130 y0.082 y0.812 y0.448 y1.349 y0.234 y1.648
Ž . Ž . Ž . Ž .UK gilt and fixed interest y0.387 y1.261 y0.001 y0.006 y0.268 y0.561 0.050 0.134
Ž . Ž . Ž . Ž .UK balanced I0.801 y2.464 0.050 0.286 I1.544 y3.327 y0.218 y0.779
Ž . Ž . Ž . Ž .Financial and property I1.015 y3.104 y0.102 y0.638 I1.577 y3.451 y0.291 y1.021
Ž . Ž . Ž . Ž .Investment trust units y0.378 y0.521 y0.468 y1.843 y2.064 y1.301 I0.619 y3.346
Ž . Ž . Ž . Ž .Commodity and energy y0.159 y1.459 0.114 1.629 I0.382 y2.315 0.115 0.280
Ž . Ž . Ž . Ž .International equity growth y0.265 y1.755 y0.090 y1.139 I0.986 y4.382 y0.110 y0.636
Ž . Ž . Ž . Ž .International equity income y0.446 y1.177 0.044 0.246 y0.459 y0.888 y0.255 y0.746
Ž . Ž . Ž . Ž .International fixed interest y1.522 y1.281 y0.956 y1.380 2.437 1.018 y0.382 y0.367
Ž . Ž . Ž . Ž .International balanced y0.201 y0.804 y0.275 y1.648 y0.529 y1.165 y0.223 y0.753
Ž . Ž . Ž . Ž .Fund of funds y0.279 y0.530 y0.092 y0.371 y0.838 y0.951 y0.426 y1.057
Ž . Ž . Ž . Ž .North America I0.346 y4.220 0.002 0.029 I0.491 y3.897 y0.117 y0.880
Ž . Ž . Ž . Ž .Europe I0.411 y4.618 y0.062 y0.925 I0.555 y5.500 I0.209 y2.714
Ž . Ž . Ž . Ž .Japan I0.485 y2.073 0.144 1.500 I0.645 y2.022 0.181 1.146
Ž . Ž . Ž . Ž .Far East including Japan 0.069 0.259 y0.012 y0.133 y0.189 y0.461 0.025 0.111
Ž . Ž . Ž . Ž .Far East excluding Japan y0.368 y1.139 0.054 0.370 I0.814 y2.114 y0.122 y0.482
Ž . Ž . Ž . Ž .Australasia y0.216 y0.939 0.155 1.449 y0.625 y1.727 y0.262 y0.882

Columns two to five report the semiparametric estimates of the coefficients on the time-varying covariates in the hazard function. A fund’s abnormal return is
measured as the fund’s average return over the previous 12 or 36 months relative to the average return within the fund’s sector during the same period. Market
returns are measured as the average returns within the sector during the previous 12 or 36 months.
The figures in parentheses are t-statistics and parameter estimates written in boldface are significant at the 5% critical level.
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sectors all produced negative coefficients on the sector return covariate, but only
for UK equity growth and UK equity income were these statistically significant.
None of the positive estimates was statistically significant.

3.4. Risk-adjusted results for UK equities

Our usage of peer-group adjusted relative returns in the above calculations has
the benefit of reflecting UK mutual fund industry practice, but is only one possible
method for assessing a fund’s performance within a given sector. An alternative,
more conventional measure of performance is obtained by adjusting fund returns
for their exposure to multiple risk factors. In the absence of a complete set of
benchmarks for the returns on all the asset categories included in Table 3, we
restrict our analysis to the UK equity sectors for which good external benchmarks
are available; these sectors collectively cover 31% of the UK mutual fund industry
by number of funds. We computed abnormal returns by regressing the funds’

Ž .excess returns relative to a short risk-free rate, r on a constant and the excessf ,t
Žreturns on the stock market index, r yr , small-cap stocks over the marketm ,t f ,t

. Ž .index , r yr , and 5-year government bonds over the risk-free rate , r yr :s,t m ,t 5, t f ,t

r yr sa qb r yr qb r yr qb r yr qeŽ . Ž . Ž .i , t f , t i m , i m , t f , t s , i s , t m , t 5, i 5, t f , t i , t

11Ž .

As our measure of the market index, we used returns on the FT-A All Share
Index, while the Hoare–Govett Small-Cap Index compiled by the London Busi-
ness School was used to measure returns on small-cap stocks. A 3-month T-bill
rate was used as the risk-free rate. This specification is based on the ‘four-index’

Ž . Ž .risk-adjustment procedure suggested by Elton et al. 1993 and Gruber 1996 , but
differs from theirs in some respects. 17

Table 4 presents the results from the semiparametric estimation of the hazard
function using these alternative covariates. 18 To assess more fully the importance

17 There is no good long-running index for returns on large-cap stocks in the UK, so we simply use
the difference between returns on small-caps and the market portfolio to capture a small-size factor.
There are also no commonly used growth and income equity indices in the UK, so we exclude a growth
minus income factor. Finally, we use returns only on government bonds, and exclude corporate bonds,
because of the dominance of government bonds in the UK bond market.

18 To compare the specifications based on the two alternative performance measurement procedures
Ž .i.e., peer-group adjusted performance vs. three-factor risk-adjusted performance , we computed the
partial log-likelihood function for the 20 sectors. We used the average return of a given sector less the
risk-free rate as a proxy for the market index. We found that the two procedures gave very similar
results for most sectors in the sense that the resulting partial log-likelihood functions were very similar.
Only in the UK equity growth, UK equity general, fund of funds and North America sectors did the
risk-adjusted covariate seem to provide a better fit, while the peer-group adjusted covariate provided
the better fit for the international equity growth and Europe sectors.
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Table 4
Effects of covariates on the hazard rate

UK equity growth UK equity general UK equity income UK smaller companies UK equity total

Performance measured oÕer preceding 12 months
Ž . Ž . Ž . Ž . Ž .Abnormal return I0.665 y5.038 I1.329 y7.069 I0.378 y3.024 0.243 1.482 I0.533 y6.922
Ž . Ž . Ž . Ž . Ž .Market return I0.224 y3.068 y0.015 y0.158 I0.134 y2.030 y0.095 y0.931 I0.124 y3.180

Performance measured oÕer preceding 24 months
Ž . Ž . Ž . Ž . Ž .Abnormal return I1.024 y4.571 I1.397 y6.621 0.361 2.360 0.302 1.678 I0.660 y7.021
Ž . Ž . Ž . Ž . Ž .Market return I0.224 y2.093 0.112 0.683 y0.152 y1.810 y0.244 y1.848 I0.154 y2.852

Performance measured oÕer preceding 36 months
Ž . Ž . Ž . Ž . Ž .Abnormal return I1.211 y7.082 I1.455 y6.644 I0.404 y2.494 0.283 1.497 I0.744 y4.621
Ž . Ž . Ž . Ž . Ž .Market return I0.264 y2.296 0.153 0.884 y0.163 y1.852 y0.239 y1.683 I0.161 y2.649

Performance measured oÕer preceding 60 months
Ž . Ž . Ž . Ž . Ž .Abnormal return I1.403 y7.346 I1.374 y6.189 I0.384 y2.259 0.340 1.709 I0.759 y7.093
Ž . Ž . Ž . Ž . Ž .Market return y0.226 y1.638 0.116 0.624 y0.128 y1.293 I0.392 y2.306 I0.153 y2.354

UK equities, risk-adjusted returns.
A fund’s abnormal return is measured as the average over the preceding period of the risk-adjusted excess return computed using a ‘three-factor’ model similar

Ž .to Elton et al. 1993 . Market returns were measured as the average returns over the preceding period within a given sector.
The figures in parentheses are t-statistics and parameter estimates written in boldface are significant at the 5% critical level.
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of the length of the performance measurement interval, and to exploit the
substantial number of funds comprising the UK equity sectors, we report results
for 12-, 24-, 36- and 60-month intervals. Three of the four equity sectors, as well
as the total UK equity sector, produced negative coefficients for the abnormal
return covariate, with all of the coefficients being statistically significant at the 5%

Žlevel. Only the UK smaller companies sector generated a statistically insignifi-
.cant positive coefficient on this covariate. However, this result is most likely

Ž .explained by the very small number of non-surviving funds 30 in this sector. The
coefficient estimates on lagged risk-adjusted performance increase in size up to a
return horizon of around 36 months and then flatten out. This is in line with the

Ž .finding of Berkowitz and Kotowitz 1993 that investors take a relatively long
view when assessing a fund’s performance.

To assess the economic significance of the coefficient estimates, we consider
the results for the total UK equities sector. The coefficient estimate on the
abnormal return over the previous 36 months, at y0.74, is almost five times larger

Ž .than the estimate obtained on the market return y0.16 . These estimates imply
that the cumulative effect of a 1% abnormal underperformance in a given month is
to more than double a fund’s hazard rate relative to the scenario of zero relative
underperformance. Similarly, the cumulative effect of a decrease in the return on
UK equities of 1% in a given month is to increase the hazard rate by 17%. These
estimates suggest that both relative and absolute performance are important
determinants of the UK equity funds’ hazard rate, with relative performance being
particularly important. 19

Fig. 3 shows a smoothed plot of the nonparametric estimates of the baseline
Ž . Ž .hazard, computed according to Eqs. 9 and 10 and measuring abnormal perfor-

Ž .mance according to Eq. 11 . Adjusting for the effects on the hazard rate of the
time-varying covariates is clearly important: it lowers the overall level of the
hazard rates, and the peak of the hazard rate is moved from a duration of 5 to 10
years to a duration of 10 to 15 years. At its peak the baseline hazard rate is around
0.20% per month. As in the case of the plot in Fig. 2 of the Kaplan–Meier
estimate of the unconditional hazard rate, the adjusted baseline hazard is lowest for
young and very old funds, and the variation in the hazard rate is very considerable.
At its peak between 10 and 15 years, the baseline hazard rate is around four times
higher than its level for the youngest and oldest funds in the sample.

19 A referee suggested that funds might be punished for errors in tracking the market or peer-group
index and conjectured that this might be reflected in a lower R2 statistic in regressions of non-surviv-
ing funds’ excess returns on the peer-group excess return relative to the R2 statistic produced by the
surviving funds. To investigate this possibility, we computed the R2 statistic for all 20 sectors and
found that in 18 out of 20 sectors, the mean R2 of the dead funds was smaller than that of the
surviving funds. Across sectors, the mean R2 statistic was 0.69 for dead funds and 0.79 for surviving
funds.
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Fig. 3. This figure shows the smoothed baseline hazard function for the UK equities total sector based
on the semiparametric Cox regression. The 95% confidence interval for the smoothing spline was
calculated from jackknife residuals.

Our analysis of the funds’ hazard function provides estimates of the probabili-
ties of closure as a function of a fund’s risk-adjusted performance and the
performance of the sector in which the fund is operating. A closely related
question is whether there exists a critical value such that abnormal performance
below this point almost inevitably leads to closure. To investigate this, we define

Ž .an event to be fund closure and the event period denoted closure period to be the
Ž36 months preceding closure, while the non-event period denoted continuation

.period consists of non-overlapping 36-month intervals prior to the event period.
We then computed histograms of the mean abnormal performance for the closure
and continuation periods and compared these. Table 5 reports fractiles of the two
distributions as well as the mean and standard deviation of the average monthly
performance during the 3-year intervals in the case of UK equity funds. Irrespec-
tive of the way abnormal returns are calculated, the distribution of performance
has a much lower mean in the closure period than in the continuation period and,
most importantly, also has a much fatter left tail. For example, the 25% fractile of
the non-survivors corresponds to the 5–10% fractile of the surviving funds. While
this suggests that there is no mechanical rule for deciding when mutual funds are
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Table 5
Distribution of fund performance in closure and continuation periods

Risk-adjusted return Peer-group adjusted return

Closure period Continuation period Closure period Continuation period

5% y1.449 y0.871 y1.230 y0.657
10% y1.154 y0.681 y0.905 y0.466
25% y0.759 y0.375 y0.491 y0.210
50% y0.423 y0.123 y0.215 0.001
75% y0.103 0.133 0.015 0.237
90% 0.257 0.441 0.284 0.519
95% 0.607 0.695 0.561 0.816
Mean y0.399 y0.084 y0.243 0.038
Standard deviation 0.821 0.805 0.541 0.531

The table reports fractiles of the distribution of mean abnormal return in the 36-month period prior to
the event of a fund’s closure and in non-overlapping 36-month continuation periods. Abnormal return
is measured either as the risk-adjusted excess return computed using a three-factor model similar to

Ž .Elton et al. 1993 or by subtracting the peer-group return from an individual fund’s return in a given
month.

closed down, it confirms that the probability of closure conditional on past
abnormal performance varies significantly across different levels of performance.

4. Discrete choice models

In this section we compare the Cox regression approach with the probit model
Ž .adopted by Brown and Goetzmann 1995 in the only other study to date of mutual

Ž .fund closure. Brown and Goetzmann 1995 construct a series of binary variables,
Ž . Ž . Ž .Y 1 , . . . , Y t , for each fund i. Each variable, Y t , is assigned the value 0 if thei i i a

w .fund lives through the time period t ,t and the value 1 if the fund isay1 a

terminated within this interval. Traditional probit models are then estimated from

Pr Y t s1 sF a t qbX x t , as1, . . . , A , 12Ž . Ž . Ž .Ž . Ž .i a ay1 i ay1 i

Ž .where F P is the cumulative distribution function of a standard normal variate.
w .This is a conditional probability for the risk of termination in the interval t ,t ,ay1 a

given that this interval is reached in the first place, so the full notation for the
Ž Ž . < Ž . Ž . .continuation probability would be Pr Y t s1 Y t s . . . sY t s0 . Thisi a i ay1 i 1

probability is distinct from the unconditional probability of termination in the
w .interval t ,t which is given byay1 a

Pr Y t s1,Y t s . . . sY t s0Ž . Ž . Ž .Ž .i a i ay1 i 1

sF a t qbX x tŽ .Ž .ay1 i ay1

ay1
X

= 1yF a t qb x t . 13Ž . Ž .Ž .Ž .Ł sy1 i sy1
ss1
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The contribution to the log-likelihood function of the probit model resulting
from the ith fund’s observed lifetime path is

LL Y t s1,Y t s . . . sY t s0Ž .Ž . Ž .Ž .i A i A y1 i 1i i

sF a t qbX x tŽ .Ž .A y1 i A y1i i

A y1i
X

= 1yF a t qb x tŽ Ž .Ž .Ł ay1 i ay1
as1

Ai
Ž .Y tX i as F a t qb x tŽ .Ž .Ł ay1 i ay1

as1

=
Ž .1yY tX i a1yF a t qb x t . 14Ž . Ž .Ž .Ž .ay1 i ay1

Ž Ž . < Ž . Ž . .The closure probability Pr Y t s1 Y t s0, . . . , Y t s0 , assumed byi a i ay1 i 1

Brown and Goetzmann to be of the probit type, is in fact a particular parameteriza-
tion of the discrete-time hazard function. To establish this point, we first draw the
connection between the continuous-time hazard specification

X
l t x sl t exp b x s 15Ž . Ž . Ž .Ž .Ž . 0

and its discrete-time equivalent. The need for discrete-time models arises when the
failure time cannot be observed continuously, but is known to lie between

Žconsecutive observations. Such grouped duration models or interval censored
models, see Kalbfleisch and Prentice, 1980; Kiefer, 1990; Fahrmeir and Tutz,

.1994 are not widely used in finance so we briefly outline their main character-
istics. First, the discrete-time hazard function is given by

dl t x sPr T- t TG t ,x , as1,2, . . . , A , 16Ž .Ž . Ž .a i a ay1 i i

w .which is the conditional probability of failure in the interval t ,t given thatay1 a

this interval is reached. The discrete-time survivor function for the interval
w .t ,t can be written asay1 a

a
d dS t x sPr T) t x s 1yl t x sy1 , 17Ž . Ž .Ž . Ž . Ž .Ž .Ła i a i s i

ss1

Ž Ž .X Ž .X.Xwhere x ' x t , . . . , x t . Hence, the unconditional probability of failurei i 1 i ay1
w .in t ,t isay1 a

d dPr t FT- t x sl t x t S t xŽ .Ž . Ž . Ž .ay1 a i a i ay1 ay1 i

ay1
d dsl t x t 1yl t x sy1 . 18Ž . Ž . Ž .Ž . Ž .Ž .Ła i ay1 s i

ss1

Ž .Suppose again that Y t s0 indicates that the ith fund is censored at t .i A Ai i

Ž .Then Eq. 14 obtains when the discrete-time hazard function is of the probit type
and there is a one-to-one mapping between a discrete-time duration model and the
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Ž .discrete choice model used by Brown and Goetzmann 1995 . We can now derive
the connection between the continuous- and discrete-time duration models:

Pr t FT- tŽ .ay1 adl t x sŽ .a i Pr TG tŽ .ay1

F t yF tŽ . Ž .a ay1
s

S tŽ .ay1

S t yS tŽ . Ž .ay1 a
s

S tŽ .ay1

taexp l s d sŽ .Hž /0s1y
tay1exp l s d sŽ .Hž /0

ta

s1yexp l s d sŽ .Hž /tay 1

ta
Xs1yexp l s exp b x s d sŽ . Ž .Ž .H 0 iž /tay 1

ta
Xs1yexp exp b x t l s d sŽ . Ž .Ž .Hi ay1 0ž /tay 1

˜ Xs1yexp exp l qb x t , for t F t- t 19Ž . Ž .Ž .ž /0 a i ay1 ay1 a

where
t t ta a ay1

l̃ s ln l s d ss ln l s d sy l s d s . 20Ž . Ž . Ž . Ž .H H H0 a 0 0 0ž /t 0 0ay 1

It follows that a proportional hazard model corresponds to assuming a Type-I
extreme value cumulative probability of closure for each interval. Seen this way,
months are no longer the smallest possible time unit and consequently the baseline

Ž .hazard l t is not identified by the data. Only the change in the cumulative0

hazard between the interval limits can be identified. In this strict sense, the Cox
regression is not a semiparametric model but instead corresponds to estimating a
piecewise linear baseline hazard. The large number of intervals implies that the
baseline hazard contains 281 parameters. Our assumption that months are a
continuous time unit allows use of the Cox regression 20 which provides the

20 Ž .Ryu 1995 analyzes the potential bias induced by estimating continuous-time proportional hazard
models using discrete duration data. He finds that the bias decreases with the interval length. The
implication is that the interval length should be a small fraction of the average duration. In the present
data set this ratio is smaller than 1r116, which is about 10 times smaller than the size Ryu suggests.
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˜estimated baseline hazard: l , as1, . . . , A . The only difference is that the Cox0 a i

regression estimates the parameters in two steps, whereas the discrete approach
uses simultaneous estimation.

In general, the discrete-time model for the ith fund can be written as
Xd ˜Pr T- t TG t ,x sl t x sFF l qb x t , as1, . . . , A .Ž .Ž . Ž . Ž .a ay1 i a i 0 a i ay1 i

21Ž .
Ž .The model can then be estimated parametrically by specifying the FF P function.

There are numerous ways in which this can be done. 21 The most widely applied
Ž .functional forms are logit and probit models Brown and Goetzmann, 1995 , so we

will compare these with the extreme value link derived from the Cox model. That
is, we estimate the following three specifications:

exp zŽ .aLFF z s ,Ž .a 1qexp zŽ .a
22Ž .PFF z sF z andŽ . Ž .a a

EVFF z s1yexp yexp z ,Ž . Ž .Ž .a a

for five different choices of z , namelya

X Ž .Base: z sb x t ,a ay1
Ž . X Ž . Ž .Trend: z sa t qb x t Brown and Goetzmann’s choice ,a ay1 ay1

˜ X ˜Ž .Piecewise: z sl qb x t , with l constant over 50, 15, and 10 months.a 0 a ay1 0 a

Using again the UK equity total sector and the three-factor risk-adjusted perfor-
mance and sectoral performance measured over the preceding 36 months as
covariates, the estimated parameters of the discrete-time models are reported in
Table 6 and the values of their log-likelihoods appear in Table 7. Recall that the
corresponding parameter estimates and t-statistics from the Cox regression are

Ž . Ž .y0.744 y7.37 and y0.161 y2.82 . The first point to note is that the
qualitative results of the effects of the covariates on the closure probability
obtained in the Cox regression are unaffected by discrete-time estimation. Second,
irrespective of which specification of FF is used, Table 7 shows that the
log-likelihood continues to increase as we shorten the interval over which the
l̃ ’s are constant. Furthermore, the estimates of b from the extreme value and0 a

logit specifications approach their values from the Cox regression as the interval
over which the age effect stays constant is narrowed. This clearly suggests that the
piecewise-linear model for the baseline hazard together with the Cox regression is
the appropriate modelling framework since it circumvents the above-mentioned
nuisance parameter problem.

21 Ž .See Aldrich and Nelson 1984 for some alternatives from the discrete-choice literature.
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Table 6
Effects of covariates in the discrete-choice models: UK equities total

Abnormal returns Market returns

Extreme value Logit Probit Extreme value Logit Probit

Ž . Ž . Ž . Ž . Ž . Ž .Base I0.330 y6.639 I0.337 y6.593 I0.120 y6.191 y0.065 y1.741 y0.066 y1.740 y0.0229 y1.692
Ž . Ž . Ž . Ž . Ž . Ž .Trend I0.351 y6.885 I0.358 y6.824 I0.136 y6.311 y0.073 y1.907 y0.074 y1.907 0.0254 y1.831
Ž . Ž . Ž . Ž . Ž . Ž .Piecewise 1 I0.424 y7.513 I0.434 y7.454 I0.154 y6.459 I0.125 y2.984 I0.128 y3.059 I0.0424 y2.776
Ž . Ž . Ž . Ž . Ž . Ž .Piecewise 2 I0.466 y7.652 I0.482 y7.448 I0.163 y6.474 I0.138 y3.158 0.147 y3.198 I0.0463 y2.932
Ž . Ž . Ž . Ž . Ž . Ž .Piecewise 3 I0.578 y8.389 I0.601 y8.114 I0.192 y7.118 I0.147 y3.127 I0.154 y3.150 I0.0463 y2.932

The figures in parentheses are t-statistics and parameter estimates written in boldface are significant at the 1% critical level.
The Base model includes only abnormal returns and market returns as regressors.
The Trend model adds fund age linearly, while Piecewise 1–3 fit a piecewise linear spline for the age effect based on intervals of 50, 15 and 10 months,
respectively.
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Table 7
Maximum value of the log-likelihood functions for the estimated discrete-choice models: UK equities
total

Extreme value Logit Probit

Base y1895.76 y1895.66 y1894.50
Trend y1893.98 y1893.86 y1892.87
Piecewise 1 y1869.37 y1869.22 y1870.06
Piecewise 2 y1861.53 y1861.34 y1863.08
Piecewise 3 y1849.25 y1848.98 y1851.82

See Table 6 for explanations of the models.

It is important to recognize that the effect of the covariates is biased towards
zero when the duration dependence is misspecified and Table 6 demonstrates the

˜Ž .Fig. 4. Estimated baseline hazard rates for the discrete choice model, FF l for as1, . . . , A , where0 a i
Ž . Ž .FF P is the extreme value, logit and probit specification. Panel a has the baseline hazard rate

Ž .piecewise linear within 17 15-month intervals, and panel b has the baseline hazard rate piecewise
linear within 27 10-month intervals.
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Fig. 5. Semiparametric estimate of the survivor function for UK equities total with a 95% confidence
interval.

significance of using the correct specification in terms of our data set. In
particular, we do not find evidence in favor of linear duration dependence. In Fig.

˜Ž .4 the discrete-time analogs of the baseline hazard are shown, with FF l0 a

constant over 15 and 10 months. This figure is consistent with the inverse
U-shaped figure derived from the Cox regression. Hence, there are important
benefits from using a nonparametric specification for duration dependence com-

Ž .pared with the linear specification adopted by Brown and Goetzmann 1995 .

5. Mutual funds’ expected survival times

The funds’ hazard rate modeled in the previous section provides information on
the probability that, at a given point in time, a fund will close down the following
month. To get a complete picture of the fund attrition process, we need to consider
the proportion of funds that have survived up to a given age, i.e., the fund survivor
function. The survivor function captures the effects on the cumulated hazard rate
of both the funds’ age and underperformance. It is based on the cumulative hazard
function which can be estimated from the sequence of hazard rates:

tŽ j. Xˆ ˆ ˆL t s exp b s u l u du 23Ž . Ž . Ž . Ž .Hj 0
0
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for t F t- t , js1, . . . ,ry1. This estimate depends on integrals which areŽ j. Ž jq1.
generally difficult to compute. We resolve this problem by using stepfunctions
over the covariates and death times and compute the cumulative hazard as

j
Xˆ ˆ ˆL t f t y t exp b s t l t 24Ž . Ž .Ž .Ž . Ž .Ý Ž .j Žk . Žky1. ky1 0 Žky1.

ks1

for t F t- t , js1, . . . , ry1.Ž j. Ž jq1.
In turn, an estimate of the survival function can be obtained as

ˆS t sexp yL t for t F t- t , js1, . . . ,ry1. 25Ž . Ž . Ž .½ 5j j Ž j. Ž jq1.

Fig. 5 shows our estimate of the survivor function for the UK equity funds. The
plot indicates that 25% of all funds have been terminated after 8 years, while 50%
have been terminated after 15 years. That the location of the survivor curve is
quite precisely determined is apparent from the narrowness of the 95% confidence
interval plotted in Fig. 5. The shape of the survivor function clearly reflects the
lower hazard rates faced by very young and very old funds.

6. Fund attrition and persistence of performance

Our findings in Section 3 suggest that a fund’s relative performance is an
important predictor of its probability of closure in the subsequent period. This
finding would be difficult to rationalize unless relative performance persists over
time. Indeed, if a fund’s past performance did not help predict its future perfor-
mance, then there would be no reason for investors to withdraw their money from

Ž .funds with poor track records. Results reported by Lehmann and Modest 1987 ,
Ž . Ž . Ž .Grinblatt and Titman 1992 , Hendricks et al. 1993 , Wermers 1996 and Carhart

Ž .1997 suggest that there does exist a group of persistently underperforming
mutual funds in the US.

To explore the conjectured relationship between persistence of performance and
fund attrition, we used a variant of the persistence measurement approach adopted

Ž .by Hendricks et al. 1993 . We sorted the set of UK equity funds into quartiles
based on their peer-group-adjusted performance over the previous 36 months. 22 A
36-month assessment period was used because of the evidence in Section 3 that
investors take a long view in assessing mutual fund performance. Only funds in
existence at the time of the sorting were considered. Four equal-weighted portfo-
lios were held over the subsequent 36-month period, after which the sorting and
portfolio formation procedure was repeated, based on the new set of funds in

22 We chose this measure because it avoids estimation of betas in the risk-adjustment procedure. This
Ž .is an important consideration in our analysis since many of the non-surviving funds have relatively

short return histories and hence, mean reversion in the b estimates is likely to induce substantial
measurement errors in estimates of performance persistence.
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existence. 23 Transition probabilities linking abnormal performance in the pre- and
post-sorting periods were used as a statistical measure of persistence of perfor-
mance and we measure the economic significance of past performance by comput-
ing the mean abnormal returns on the four past-performance-sorted portfolios.

Since we have a data set that includes both surviving and non-surviving funds,
Žwe can carry out these experiments both for the entire set of funds comprising

.survivors and non-survivors and for the set of surviving funds only. A comparison
between the two sets of results will then shed light on the effect of fund closure on
measured persistence of performance.

Table 8 reports the outcome from this exercise. First, consider the estimated
Žtransition probabilities for the full set of surviving and non-surviving funds Panel

.A . If there was no persistence of performance, the estimated transition probabili-
ties should all equal 0.25. This hypothesis is clearly rejected by the data: the
probability that the historically worst-performing funds will remain in the bottom
quartile of performers is estimated at 0.332. Likewise, the probability of repeated
relative performance in the top quartile is 0.355.

Turning next to the surviving funds, the evidence of persistence in relative
performance is weaker. For example, the transition probability estimates associ-
ated with repeat performance in the bottom and top quartiles are now 0.284 and
0.317, down by about five and four points for the worst and best performers,
respectively, compared with the full set of UK equity funds. 24 In both cases, the
decline in persistence can be attributed to drawing the funds from a more

Ž .homogenous set of funds funds observed conditional on survival as opposed to
drawing funds from a mixture of non-survivors and survivors, each with very

Ž .different centering points of their return distribution cf. Table 5 .
A similar result emerges from our analysis of the economic significance of

persistence. The estimates of mean abnormal performance in panel B show that the
portfolio comprising the historically worst-performing funds paid a mean return of
y0.11% per month. This compares with an abnormal performance of 0.11% for
the historically best-performing funds, producing a difference of 0.21% per month.
In comparison, the set of historically worst-performing surviving funds generated
mean returns of 0.02% per month, while the historically best-performing surviving
funds generated mean returns of 0.05%. The performance differential is thus of the
order of 0.03%, or six times smaller than the differential return recorded for the
full set of funds that included non-survivors.

23 If a fund closed during the 36-month holding period, this fund was dropped from the portfolio in
the subsequent month and a new equal-weighted portfolio excluding the dead fund was formed.

24 A standard chi-squared test of significance of the individual cell counts showed that the upper left
and lower right cell probabilities were statistically significantly different from 0.25 at the 1% critical
level when the full set of funds was considered but only remained significant for the best performers in
the set of surviving funds.
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Table 8
Persistence of peer-group adjusted returns: UK equities total

Ž .A Transition probabilities

Past performance Future performance

I II III IV

All funds
Ž .I worst 0.332 0.251 0.212 0.205

II 0.224 0.267 0.288 0.221
III 0.203 0.297 0.281 0.219

Ž .IV best 0.242 0.184 0.219 0.355

SurÕiÕing funds
Ž .I worst 0.284 0.240 0.221 0.255

II 0.225 0.277 0.280 0.218
III 0.221 0.303 0.266 0.210

Ž .IV best 0.269 0.181 0.232 0.317

Ž .B Mean returns on funds sorted according to previous performance

All funds Surviving funds

Ž .I worst y0.107 0.019
II y0.039 0.042
III y0.003 0.031

Ž .IV best 0.105 0.052

Every 36 months, the funds were sorted into quartiles based on their performance over the previous
3-year period. For each of these quartiles, the proportion of funds that fall into a given quartile based
on performance over the subsequent 3-year period was recorded and is reported as transition
probabilities.
Quartile I comprises funds with the worst relative performance while quartile IV consists of the best
performing funds.
Panel B reports the mean returns on equally-weighted portfolios formed by sorting the set of funds
based on past performance over the previous 3-year period. Only funds that were in existence at the
time the sort was performed are included in the portfolios.
The ‘All funds’ portfolio includes both survivors and non-survivors while the ‘surviving funds’
portfolio consists exclusively of funds that were active at the end of the sample.

In a model where excess returns are genuinely serially uncorrelated, Brown et
Ž .al. 1992 demonstrate how survivorship bias can introduce spurious persistence in

standard measures of performance. In their model, there is no persistence when
returns are computed across the full set of surviving and non-surviving funds in
existence. Excluding funds with the worst performance from the sample will
introduce a potentially serious bias in the estimated persistence for the surviving
funds. A very different effect operates in our sample which is dominated by funds
with persistently poor performance records and a higher than normal closure
probability. Since these funds have higher persistence than the funds that survive,
excluding them from the analysis leads to a decline in the persistence estimate.
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We conclude from these results that the mutual fund attrition process can have
an important effect on standard measures of performance persistence. While there
is only weak evidence of persistence in the sample comprising funds that survived
to the end of the sample, inclusion of non-surviving funds introduces stronger
evidence of performance persistence.

7. Conclusion

Our finding of an inverse U-shaped hazard function for mutual funds may be
consistent with a variety of theoretical models of investor behavior and it has an

Ž .interesting theoretical precedence in the labor literature. Jovanovic 1979 pro-
poses a model where workers and firms have to learn gradually the quality of their
job match and this implies an inverse U-shape for the job tenure hazard function.
Our findings can possibly be explained by a similar learning process in which
investors extract information concerning fund performance. Investors are unlikely
to know ex ante which funds will outperform in the future and hence have to learn
this gradually as a fund’s track record is established. After sufficient data has been
accumulated, investors may recognize that certain funds underperform, withdraw
their money, thereby causing the funds to close. Funds that survive this treatment
are more likely to be perceived as having a good track record, thus, possibly
explaining the subsequent decline in the hazard rate observed in our data.

In our set-up, the data from which investors infer a mutual fund’s performance
is its published returns record. Returns data are notoriously volatile and noisy so
the process through which investors attempt to learn the true skills of a mutual
fund manager is likely to be rather slow. This matches our findings of a
‘honeymoon period’, i.e., that mutual funds are typically not closed down early on
after their inception. It is also consistent with the finding that a fund’s performance
over the previous 3 years matters more for its closure probability than its
performance over the previous year.

A Bayesian updating story of fund closure also suggests that the hazard rate
declines in periods where the market is noisy and inference is slowed down. If, as
seems likely, genuinely good managers are distinguished from bad managers in
that they observe information that is only weakly correlated with market returns,
then luck rather than investment skill is likely to be more important to relative
return performance in a very volatile market with a lower signal-to-noise ratio. To
investigate whether hazard rates decline when market volatility is high, we
repeated the Cox regression analysis for the UK equity funds, using both the
lagged means and standard deviations of abnormal performance and sector perfor-
mance as covariates. We found that while the standard deviation of individual
funds’ abnormal performance did not affect the hazard rate, the coefficient on the
standard deviation of lagged sectoral return, at y0.29, was highly statistically
significant. Consistent with the updating story, hazard rates thus appear to decline
during volatile markets.
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Appendix A: Analysis of residuals from the Cox regression

To assess the parametric specification in the Cox regression, we computed
martingale residuals and score residuals. An estimate of the ith fund’s cumulative
hazard function is given by

t Xˆ ˆ ˆL t s exp b x u l u du. 26Ž . Ž . Ž . Ž .Hi i 0
0

The martingale residual for the ith fund is defined as

ˆr t sd yL t . 27Ž . Ž . Ž .M i i i ii

where d is zero if the ith fund is right-censored and unity otherwise. Thesei

residuals have properties similar to those possessed by residuals from linear
regression analysis, although they are not symmetrically distributed about zero.
The residual can be interpreted as the difference between the observed and

Ž .expected number of deaths for the ith fund in the interval 0, t . In Fig. 6, thei

martingale residuals for the UK equity funds are plotted against abnormal and
Ž .market returns prior to death or censoring. The residuals in the interval 0, 1 are

the ones associated with the dead funds, while the residuals below zero correspond
to censored funds. Consistent with the conclusion from the semiparametric regres-
sion analysis, dead funds appear to have worse underperformance than censored
funds. Apart from this regularity, the plots do not display any systematic patterns.
The clustering of points in the common component plot simply reflects the
censoring of a group of funds at the end of the study. Funds in the same sector
register the same value of the common component at this time. Significantly, very
few extreme values of the residuals are encountered, indicating that the functional
representation of the covariates is adequate.

The score residual for the ith fund’s jth covariate is based on the score
process:

tˆ ˆ ˆ ˆr b ,t sd x t yx b ,t y x s yx b ,s d L s 28Ž . Ž . Ž . Ž .Ž . Ž .Ž . H½ 5 ½ 5S i i j i j i i j j ii j
0
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Fig. 6. Using the UK equity total sector, the figure plots martingale residuals from the semiparametric
regression with time-varying covariates against the abnormal and market returns corresponding to
either the death or censoring time for each fund.

where x is the weighted mean of the covariates of those funds that are still at riskj

at time t,

ˆ XÝ x t exp b x tŽ . Ž .Ž .l g RRŽ t . l j lˆx b ,t s . 29Ž .Ž .j XˆÝ exp b x tŽ .Ž .l g RRŽ t . l

The score residuals provide an estimate of the ith component of the efficient
score for the model’s jth parameter. These residuals can be used to examine the

ˆleverage of individual funds by computing the approximate change in b if that
observation was dropped. In Fig. 7, the score residuals for the UK equity funds are
plotted against the survival time of the corresponding fund. The plot for the
abnormal performance coefficient gives a very weak indication that funds with the
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Fig. 7. Using the UK equity total sector, the figure plots score residuals for the abnormal and market
return against a fund’s age.

shortest survival times influence the coefficient estimates the most. There are no
apparent anomalies in the plot for the common component coefficient.

We conclude from the analysis of these residuals that the functional specifica-
tion of the included covariates is satisfactory.
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